A representation for harmonic Bergman function and its application

Kiyoki Tanaka

Department of Mathematics Osaka City University

September, 6, 2012/ Potential Theory and its Related Fields

・ 回 ト ・ ヨ ト ・ ヨ ト

Outline of talk

- Introduction
- Representation theorem
- Interpolation theorem
- Modified harmonic Bergman kernel
- Application

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Let $1 \le p < \infty$ and $\Omega \subset \mathbb{R}^n$ is a bounded domain. $b^{\rho}(\Omega) := \{f : \text{ harmonic in } \Omega \text{ and } \|f\|_{\rho} < \infty\}$ b^{ρ} is called harmonic Bergman space.

- $b^{\rho}(\Omega) \subset L^{\rho}(\Omega)$: closed subspace
- *f* ∈ *b*²(Ω) has the following representation (reproducing property);

$$f(oldsymbol{x}) = \int_\Omega R(oldsymbol{x},oldsymbol{y}) f(oldsymbol{y}) doldsymbol{y}$$
 for $oldsymbol{x}\in \Omega$

 $R(\cdot, \cdot)$ is called harmonic Bergman kernel.

(日本) (日本) (日本)

When $\Omega = B$ (unit ball),

$$R_{B}(x,y) = \frac{(n-4)|x|^{4}|y|^{4} + (8x \cdot y - 2n - 4)|x|^{2}|y|^{2} + n}{n|B|((1-|x|^{2})(1-|y|^{2}) + |x-y|^{2})^{1+\frac{n}{2}}}$$

and

$${\mathcal R}_{B}(x,x) = rac{(n-4)|x|^4+2n|x|^2+n}{n|B|(1-|x|^2)^n}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Theorem (Kang-Koo 2002)

Let Ω be a smooth bounded domain and α and β be multi-indices. Then, there exist $C_{\alpha,\beta} > 0$ and C > 0 such that for any $x, y \in \Omega$

$$|D^lpha_x D^eta_y {\sf R}(x,y)| \leq rac{C_{lpha,eta}}{d(x,y)^{n+|lpha|+|eta|}}$$

and

$$R(x,x)\geq \frac{C}{r(x)^n}$$

where d(x, y) := r(x) + r(y) + |x - y| and r(x) is the distance between x and boundary of Ω .

・ロト ・聞 ト ・ ヨト ・ ヨト

In the following talk, we assume that Ω is a bounded smooth domain. Then, for any $1 \le p < \infty$, $f \in b^p(\Omega)$ has the reproducing property, that is

$$f(\mathbf{x}) = \int_{\Omega} R(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$
 for $f \in b^{p}(\Omega)$.

We denote the harmonic Bergman projection P by

$$Pf(\mathbf{x}) := \int_{\Omega} R(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y} \quad f \in L^{p}(\Omega)$$

If $1 , then <math>P : L^{p}(\Omega) \rightarrow b^{p}(\Omega)$ is bounded linear operator.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Theorem (T. 2012)

Let $1 and <math>\Omega$ be a bounded smooth domain. Then, we can choose a sequence $\{\lambda_i\}$ in Ω such that $A : \ell^p \to b^p$ is a bounded onto map, where the operator A is defined by

$$A\{a_i\}(\mathbf{x}) := \sum_{i=1}^{\infty} a_i R(\mathbf{x}, \lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n},$$

where r(x) denotes the distance between x and $\partial \Omega$.

ヘロト ヘアト ヘビト ヘビト

Lemma (covering lemma)

Let $0 < \delta < \frac{1}{4}$. We can choose N (independ of δ), $\{\lambda_i\} \subset \Omega$ and disjoint covering $\{E_i\}$ for Ω .

- E_i is measurable set for any $i \in \mathbb{N}$;
- $E_i \subset B(\lambda_i, \delta r(\lambda_i))$ for any $i \in \mathbb{N}$;
- {B(λ_i, 3δr(λ_i))} is uniformly finite intersection with bound N

イロト イポト イヨト イヨト 二日

We define the operators $U_{p,\{\lambda_i\}}: b^p \to \ell^p$ and $S_{p,\{\lambda_i\}}: b^p \to b^p$ as following;

$$S_{p,\{\lambda_i\}}f(\mathbf{x}) := \sum_{i=1}^{\infty} R(\mathbf{x},\lambda_i)f(\lambda_i)|E_i|$$

$$U_{p,\{\lambda_i\}}(f) := \{|E_i|f(\lambda_i)r(\lambda_i)^{-(1-rac{1}{p})n}\}_i\}$$

where $\{E_i\}_i$ is the disjoint covering of Ω such that $\lambda_i \in E_i$ for any $i \in \mathbb{N}$. Because $S = A \circ U$, we may show that S is bijective map. By calculating ||S - Id||, we can give the condition that S is bijective.

(日本) (日本) (日本)

In the previous section, we discussed the map from ℓ^p to b^p . In this section, we discuss the map from b^p to ℓ^p .

Definition

Let $1 and <math>\{\lambda_i\}_i \subset \Omega$. We define the map $V : b^p \to \ell^p$ by $V(f) = \{f(\lambda_i)r(\lambda_i)^{\frac{n}{p}}\}$

Definition (pseudo hyperbolic distance)

$$\rho(\mathbf{x},\mathbf{y}) = \inf \int_{\gamma_{\mathbf{x},\mathbf{y}}} \frac{1}{r(\mathbf{z})} ds(\mathbf{z})$$

where $\gamma_{x,y}$ is the C^{∞} -curve from an initial point x to an end point y.

・ロット (雪) (手) (日) (

Theorem

Let $1 and <math>\Omega$ be a bounded smooth domain. There exists a positive constant ρ_0 such that if $\rho(\lambda_i, \lambda_j) > \rho_0$ for any $i \neq j$, then $V : b^p \to \ell^p$ is bounded onto map, where $\rho(\mathbf{x}, \mathbf{y})$ is pseudo-hyperbolic distance and $Vf := \{r(\lambda_i)^{\frac{n}{p}}f(\lambda_i)\}_i$.

イロト イポト イヨト イヨト 一日

Outline of the proof of interpolation

We consider

$$W\{a_i\} = V \circ A\{a_i\} = \{r(\lambda_j)^{\frac{n}{p}} \sum_i a_i R(\lambda_j, \lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n}\}_j.$$

We may only show W is bijective. And we define the diagonal part D and off-diagonal part E

$$D\{a_i\} := \{a_j R(\lambda_j, \lambda_j) r(\lambda_j)^n\}_j$$

and

$$E\{\mathbf{a}_i\} := \{r(\lambda_j) \sum_{i \neq j} \mathbf{a}_i \mathbf{R}(\lambda_j, \lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n} \}_j.$$

By standard argument, we may show

$$\|E\| < \frac{1}{\|D^{-1}\|}.$$

→ Ξ → < Ξ →</p>

Modified harmonic Bergman kernel

We choose a defining function η for Ω such that $|\nabla \eta|^2 = 1 + \eta \omega$ for some $\omega \in C^{\infty}(\overline{\Omega})$. We denote the differential operator K_1 by

$$\mathcal{K}_1 g := g - rac{1}{2} \Delta(\eta^2 g),$$

and we denote the following kernel and projection;

 $R_1(x, y) := K_1(R_x)(y)$: modified harmonic Bergman kernel,

where $R_x(\cdot) := R(x, \cdot)$

$$P_1f(x) := \int_{\Omega} R_1(x, y) f(y) dy$$
 modified projection.

(四) (日) (日) 日

Theorem (Choe-Koo-Yi 2004)

- $P_1 f = f$ for any $f \in b^1(\Omega)$.
- $P_1: L^p(\Omega) \to b^p(\Omega)$ is bounded for any $1 \le p < \infty$.
- For any multi-index α , there exists $C_{\alpha} > 0$ such that

$$egin{aligned} |D^lpha_x R_1(x,y)| &\leq rac{C_lpha r(y)}{d(x,y)^{n+1+|lpha}} \ |D^lpha_y R_1(x,y)| &\leq rac{C_lpha}{d(x,y)^{n+1}} \end{aligned}$$

イロト イポト イヨト イヨト 一日

Theorem (T. (to appear in Osaka Journal))

Let $1 \le p < \infty$ and Ω be a smooth bounded domain. Then, we can choose a sequence $\{\lambda_i\}$ in Ω such that $A_1 : \ell^p \to b^p$ is a bounded onto map, where the operator A_1 is defined by

$$A_1\{a_i\}(\mathbf{x}) := \sum_{i=1}^{\infty} a_i R_1(\mathbf{x}, \lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n},$$

Definition and problem for Toeplitz operator

We consider the positive Toeplitz operator on b^2 .

Definition (Toeplitz operator)

We call the operator T_{μ} on b^2 the Toeplitz operator with symbol μ , if

$$\mathcal{T}_{\mu}f(\mathbf{x}) := \int_{\Omega} \mathcal{R}(\mathbf{x},\mathbf{y})f(\mathbf{y})d\mu(\mathbf{y}).$$

Problem.

What condition is the Toeplitz operator T_{μ} **good** (bonded, compact and Schatten σ -class S^{σ} etc) ?

ヘロト ヘアト ヘビト ヘビト

Definition of associate functions

Definition (averaging function, Berezin transform)

For any $0 < \delta < 1$ and 1 , we define

$$\hat{\mu}_{\delta}({m x}) := rac{|\mu({m E}_{\delta}({m x}))|}{V({m E}_{\delta}({m x}))}$$
: averaging function

and

$$ilde{\mu}_{
ho}(m{x}) := rac{\int_{\Omega} |R(m{x},m{y})|^{
ho} d\mu(m{y})}{\int_{\Omega} |R(m{x},m{y})|^{
ho} dy}$$
 : Berezin transform

for any $x \in \Omega$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The preceding result for Toeplitz operator

Theorem (Choe-Lee-Na 2004)

Let $1 \le \sigma < \infty$ and $0 < \delta < 1$. For $\mu \ge 0$, the following conditions are equivalent;

$$T_{\mu} \in \mathbf{S}_{\sigma},$$

2
$$\tilde{\mu}_2 \in L^{\sigma}(dV_R)$$
,

$$\ \, \widehat{\mu}_{\delta} \in L^{\sigma}(dV_R),$$

for some $\{\lambda_j\}$ satisfied with covering lemma, where $dV_R = R(x, x)dx$.

・ロン・(理)・・ヨン・ヨン 三臣

Theorem (T. (to appear in Osaka Journal))

Let $\sigma > \frac{2(n-1)}{n+2}$ and $\mu \ge 0$. Choose a constant $\delta > 0$ and a sequence $\{\lambda_j\}$ satisfying the conditions obtained by covering lemma. If $\sum_{j=1}^{\infty} \hat{\mu}_{\delta}(\lambda_j)^{\sigma} < \infty$, then $T_{\mu} \in S_{\sigma}$.

<ロト < 同ト < 回ト < 回ト = 三

[1] B. R. Choe, H. Koo and H. Yi, *Projections for harmonic Bergman spaces and applications*, J. Funct. Anal., **216** (2004), 388–421.

[2] B. R. Choe and H. Yi, *Representations and interpolations of harmonic Bergman functions on half-spaces*, Nagoya Math. J. **151** (1998), 51–89.

[3] R.R. Coifman and R. Rochberg, *Representation Theorems* for Holomorphic and Harmonic functions in L^p, Astérisque **77** (1980), 11–66.

[4] H. Kang and H. Koo, *Estimates of the harmonic Bergman kernel on smooth domains*, J. Funct. Anal., **185** (2001), 220–239.

[5] K. Tanaka, Atomic decomposition of harmonic Bergman functions, Hiroshima Math. J., 42 (2012), 143–160.
[6] K. Tanaka, Representation theorem for harmonic Bergman and Bloch functions, to appear in Osaka J. Math..