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Harmonic Bergman space

Let B be a unit ball in Rn and Harm(B) be the space of all harmonic
functions on B. We define the harmonic Bergman space b2(B) by

b2(B) := Harm(B) \ L2(B, dx).

Moreover, for ↵ > �1 we consider the weighted harmonic Bergman
space

b2
↵(B) := Harm(B) \ L2(B, dV↵).
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Harmonic Bergman space

When d⌫ = dx or dV↵, b2(B) and b2
↵(B) have the following properties;

1 point evaluation map evx : f 2 b2
↵(B) ! f (x) 2 R is bounded for

any x 2 B.
2 b2

↵(B) : Hilbert space (complete).
3 b2

↵ has the reproducing kernel R↵(x , y), i.e.,

f (x) =
Z

B
R↵(x , y)f (x)dV↵(y) for any x 2 B, f 2 b2

↵(B).

We also consider operators on b2
↵(B).
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Operators on harmonic Bergman space

We consider the following operators:
orthogonal projection Q↵ : L2(B, dV↵) ! b2

↵(B) which is written by

Q↵f (x) =
Z

B
R↵(x , y)f (y)dV↵(y) for f 2 L2(B, dV↵)

Toeplitz operator T�,↵f = Q↵(�f ) for f 2 b2
↵(B).
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Harmonic Bergman space with measure weight

Let ⌫ be a positive Borel measure on B.We denote by

b2
⌫ = b2

⌫(B) := Harm(B) \ L2(B, d⌫)

the harmonic Bergman space with weight ⌫.

Questions:
When point evaluation maps f 7! f (x) on b2

↵ are bounded?
When b2

⌫ is complete?
Analysis of Toeplitz operator on b2

⌫ .
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Uniqueness set

Definition (c.f. Nakazi-Yamada Can. J. Math.(1996))
E is said to be a uniqueness set for harmonic functions if a harmonic
function h defined on an open set U satisfies E ⇢ U and h = 0 on E ,
then h = 0 on U.

Remark. If supp⌫ is a uniqueness set for harmonic functions, then
kfkb2

⌫
:=
�R

B |f (x)|2d⌫(x)
� 1

2 is a norm of b2
⌫ .
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Let ⌫ be a positive radial measure on B, that is,

d⌫(x) = d⌫⇤(r)d�(✓).

where x = r✓, r 2 [0, 1) and ✓ 2 S = @B.
In the case of radial measure ⌫, supp⌫ is not a uniqueness set for
harmonic functions if and only if ⌫ = c�0(Dirac measure at 0).

Proposition (infinite case)
Let ⌫ be a positive radial Borel measure on B.
If ⌫(B) = 1, then b2

⌫ = {0}.

In what follows, we assume that ⌫ is finite.
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Spherical harmonics

Let Hm = Hm(Rn) be the space of all harmonic homogeneous
polynomials of degree m and for a set A in Rn put

Hm(A) := {h|A : h 2 Hm(Rn)}.

Let S = @B and � denote by a surface measure on S. Then, the
Hilbert space L2(S,�) = L2(S) admits the orthogonal decomposition

L2(S) =
1M

m=0

Hm(S).
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Expansion of harmonic functions

Lemma (Expansion)

Let f be a harmonic function on B. Then there uniquely exist �m 2 Hm
(m � 0) such that

f =
1X

m=0

�m

which converges uniformly on any compact subset of B.
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Prove that ⌫(B) = 1 ) b2
⌫ = {0}

By the expansion f =
P1

m=0 �m �m 2 Hm, we have

1 >

Z

B
|f (x)|2d⌫(x) = lim

✏!1

Z ✏

0

Z

S

 1X

m=0

�m(r✓)

!2

d�(✓)d⌫⇤(r)

= lim
✏!1

Z ✏

0

1X

m=0

Z

S
�m(r✓)2d�(✓)d⌫⇤(r)

=

Z 1

0

1X

m=0

r2mk�mk2
L2(S)d⌫⇤(r)

� k�mk2
L2(S)

Z 1

0
r2md⌫⇤(r).

This implies that �m = 0 for any m � 0.
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Fundamental properties

Proposition
Let ⌫ be a positive finite radial Borel measure on B, i.e., d⌫ = d⌫⇤d�. If
supp⌫ is not compact on B, that is, ⌫⇤([r , 1)) > 0 for any r 2 [0, 1), then
the following properties holds:

For x 2 B, |f (x)|  Cxkfkb2
⌫
.

b2
⌫ is complete.

b2
⌫ has the reproducing kernel R⌫(x , y), i.e., for x 2 B there exists

uniquely R⌫(x , ·) 2 b2
⌫ such that for f 2 b2

⌫

f (x) =
Z

B
R⌫(x , y)f (y)d⌫(y).
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Proof
Let r0 2 [0, 1) and x 2 Br0 . By the Poisson formula, we have

f (x) =
Z

Sr

Pr (x , ✓)f (✓)d�r (✓).

By multiplying ⌫⇤([r0, 1)) both side, we have

f (x)⌫⇤([r0, 1)) =
Z 1

r0

Z

Sr

Pr (x , ✓)f (✓)d�r (✓)d⌫⇤(r).

By the estimate for Poisson kernel as follow;

|Pr (x , ✓)|  C(|x |, r0) for r0 < r < 1,

we have

|f (x)|2⌫⇤([r0, 1))  C(|x |, r0)

Z

B\Br0

|f (x)|2d⌫(x)  C(|x |, r0)kfkb2
⌫
.
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Fundamental properties

Proposition (completeness 2)
Let ⌫ be a positive finite Borel measure on B. Suppose supp⌫ be a
uniqueness set for harmonic functions. If b2

⌫ is complete, then
⌫(B \ K ) > 0 for any compact set K ⇢ B.

Therefore, we have the following result.

Theorem
Let ⌫ be a positive finite radial Borel measure on B with d⌫ = d⌫⇤d�.
Then, b2

⌫ is complete if and only if ⌫⇤([r , 1)) > 0 for any r 2 [0, 1).

We define by Mrad the set of all positive finite radial Borel measure on
B satisfying ⌫⇤([r , 1)) > 0 for any r 2 [0, 1).
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Orthogonal decomposition

Theorem (Orthogonal decomposition)
Let ⌫ 2 Mrad . Then, we have the following orthogonal decomposition

b2
⌫ =

1M

m=0

Hm.

Denote by Z ⌫
m the orthogonal projection onto Hm.

Z ⌫
mf (x) =

Z

B
Z ⌫

m(x , y)f (y)d⌫(y)

Kiyoki Tanaka (OCAMI) Harmonic Bergman spaces PH 2014 15 / 23



Toeplitz operator

For a bounded measurable function � on B, we define Toeplitz
operator T�,⌫ on b2

⌫ by

T�,⌫ f (x) = Q⌫ [�f ](x)

=

Z

B
R⌫(x , y)f (y)�(y)d⌫(y) for f 2 b2

⌫ .

Theorem (Spectrum of Toeplitz operator)
Let ⌫ 2 Mrad and a symbol function � be bounded measurable. If � is
radial, that is, �(x) = �⇤(|x |), then the eigenvalues of the weighted
Toeplitz operator T�,⌫ are the following;

�m(T�,⌫) =

R 1
0 r2m�⇤(r)d⌫⇤(r)
R 1

0 r2md⌫⇤(r)
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Radialization of functions(Preparationfor an
application)

For a function f on B, we define the radicalization Rf by

Rf (x) :=
Z

U2O(n)
RU�1 f (x)d�O(n)(U)

for any x 2 B where O(n) is the group of orthogonal matrices and
�O(n) is the normalized Haar measure on O(n) and RUf (x) := f (Ux).
f is radial if and only if Rf = f .

Kiyoki Tanaka (OCAMI) Harmonic Bergman spaces PH 2014 17 / 23



Radialization of operators

For an operator T on b2
⌫ , we define the radicalization RT by

RT =

Z

U2O(n)
R⇤

UTRUd�O(n)(U)

where the above integral means that for f , g 2 b2
⌫ ,

h(RT )f , gi =
Z

U2O(n)
hR⇤

UTRUf , gi⌫d�O(n)(U).

An operator T on b2
⌫ is called radial if RT = T .

Let ⌫ 2 Mrad . If a function � is bounded measurable on B, then

RT�,⌫ = TR�,⌫ .

In particular, � is radial, then T�,⌫ is radial.
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Compactness of Toeplitz operator

By the basic properties for functional analysis, we can check the
following lemma.

Lemma
Let ⌫ be positive finite measure on B and b2

⌫ be complete. Assume � is
positive and belong to C(B).
If � = 0 on @B, then T�,⌫ is compact.

Conversely, we have the following result.

Theorem (compactness)
Let ⌫ 2 Mrad , � be positive and belong to C(B). If the Toeplitz operator
T�,⌫ is compact, then � = 0 on @B.
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Expansion of harmonic Bergman kernel

Lemma
Let ⌫ 2 Mrad . Then, we have

R⌫(x , y) =
1X

m=0

Z ⌫
m(x , y) =

1X

m=0

Zm(x , y)
(2m + n)

R 1
0 r2md⌫⇤(r)

for any x , y 2 B.

Kiyoki Tanaka (OCAMI) Harmonic Bergman spaces PH 2014 20 / 23



Comparison of Bergman kernel

Proposition
Let µ and ⌫ belong to Mrad . If µ(A)  ⌫(A) for any Borel set A ⇢ B, then

Rµ(x , x) � R⌫(x , x)

Moreover, the boundary behavior of R⌫(x , x) depends on that of
measure ⌫.

Theorem
Let µ and ⌫ belong to Mrad . If

0 < lim inf
r!1

µ⇤([r , 1))
⌫⇤([r , 1))

 lim sup
r!1

µ⇤([r , 1))
⌫⇤([r , 1))

< 1, then

Rµ(x , x) ⇡ R⌫(x , x).
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Future works

Relation between spectrum �m(T�,⌫) and averaging function �̂�.
Relation between spectrum �m(T�,⌫) and Berezin transform �̃.
Estimate for R⌫(x , y).
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