Harmonic Bergman spaces with radial measure weight on the ball

Kiyoki Tanaka

Osaka City University Advanced Mathematical Institute (OCAMI)

Sep, 4, 2014 / Potential theory symposium

joint work with Masaharu Nishio(Osaka City Univ.)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▶ ◀ 토 ▶ ◀ 토 ▶

Outline

- 2 Harmonic Bergman space with radial measure weight
- 3 Toeplitz operator on harmonic Bergman space with radial measure weight

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

3

▶ < 토 ▶ < 토 ▶

Let \mathbb{B} be a unit ball in \mathbb{R}^n and $Harm(\mathbb{B})$ be the space of all harmonic functions on \mathbb{B} . We define the harmonic Bergman space $b^2(\mathbb{B})$ by

$$b^2(\mathbb{B}) := Harm(\mathbb{B}) \cap L^2(\mathbb{B}, dx).$$

Moreover, for $\alpha > -1$ we consider the weighted harmonic Bergman space

$$b^2_{\alpha}(\mathbb{B}) := Harm(\mathbb{B}) \cap L^2(\mathbb{B}, dV_{\alpha}).$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Harmonic Bergman space

When $d\nu = dx$ or dV_{α} , $b^2(\mathbb{B})$ and $b^2_{\alpha}(\mathbb{B})$ have the following properties;

- point evaluation map $ev_x : f \in b^2_{\alpha}(\mathbb{B}) \to f(x) \in \mathbb{R}$ is bounded for any $x \in \mathbb{B}$.
- 2 $b^2_{\alpha}(\mathbb{B})$: Hilbert space (complete).
- 3 b_{α}^2 has the reproducing kernel $R_{\alpha}(x, y)$, i.e.,

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(x) dV_{\alpha}(y)$$
 for any $x \in \mathbb{B}, f \in b_{\alpha}^{2}(\mathbb{B})$.

We also consider operators on $b^2_{\alpha}(\mathbb{B})$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Harmonic Bergman space

When $d\nu = dx$ or dV_{α} , $b^2(\mathbb{B})$ and $b^2_{\alpha}(\mathbb{B})$ have the following properties;

- point evaluation map $ev_x : f \in b^2_{\alpha}(\mathbb{B}) \to f(x) \in \mathbb{R}$ is bounded for any $x \in \mathbb{B}$.
- 2 $b^2_{\alpha}(\mathbb{B})$: Hilbert space (complete).
- 3 b_{α}^2 has the reproducing kernel $R_{\alpha}(x, y)$, i.e.,

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(x) dV_{\alpha}(y)$$
 for any $x \in \mathbb{B}, f \in b_{\alpha}^{2}(\mathbb{B})$.

We also consider operators on $b^2_{\alpha}(\mathbb{B})$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- ▲ 🗗 🕨 🔺 🖻 🕨 🖉 🖻 🖉

We consider the following operators:

• orthogonal projection $Q_{\alpha}: L^2(\mathbb{B}, dV_{\alpha}) \to b^2_{\alpha}(\mathbb{B})$ which is written by

$$Q_{lpha}f(x) = \int_{\mathbb{B}} R_{lpha}(x,y)f(y)dV_{lpha}(y)$$
 for $f \in L^2(\mathbb{B},dV_{lpha})$

• Toeplitz operator $T_{\phi,\alpha}f = Q_{\alpha}(\phi f)$ for $f \in b_{\alpha}^{2}(\mathbb{B})$.

Let ν be a positive Borel measure on $\mathbb B.We$ denote by

$$b_{\nu}^2 = b_{\nu}^2(\mathbb{B}) := Harm(\mathbb{B}) \cap L^2(\mathbb{B}, d\nu)$$

the harmonic Bergman space with weight ν .

Questions:

- When point evaluation maps $f \mapsto f(x)$ on b_{α}^2 are bounded?
- When b_{ν}^2 is complete?
- Analysis of Toeplitz operator on b_{ν}^2 .

5900

<ロ > < 回 > < 回 > < 回 > < 回 > <

Let ν be a positive Borel measure on \mathbb{B} . We denote by

$$b_{\nu}^2 = b_{
u}^2(\mathbb{B}) := Harm(\mathbb{B}) \cap L^2(\mathbb{B}, d
u)$$

the harmonic Bergman space with weight ν .

Questions:

- When point evaluation maps $f \mapsto f(x)$ on b_{α}^2 are bounded?
- When b_{ν}^2 is complete?
- Analysis of Toeplitz operator on b_{ν}^2 .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Definition (c.f. Nakazi-Yamada Can. J. Math.(1996))

E is said to be a uniqueness set for harmonic functions if a harmonic function *h* defined on an open set *U* satisfies $E \subset U$ and h = 0 on *E*, then h = 0 on *U*.

Remark. If $supp\nu$ is a uniqueness set for harmonic functions, then $\|f\|_{b^2_{\nu}} := (\int_{\mathbb{B}} |f(x)|^2 d\nu(x))^{\frac{1}{2}}$ is a norm of b^2_{ν} .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

日とくほとくほと

Let ν be a positive radial measure on \mathbb{B} , that is,

 $d\nu(x) = d\nu_*(r)d\sigma(\theta).$

where $x = r\theta$, $r \in [0, 1)$ and $\theta \in S = \partial \mathbb{B}$.

In the case of radial measure ν , $supp\nu$ is not a uniqueness set for harmonic functions if and only if $\nu = c\delta_0$ (Dirac measure at 0).

Proposition (infinite case)

Let ν be a positive radial Borel measure on \mathbb{B} . If $\nu(\mathbb{B}) = \infty$, then $b_{\nu}^2 = \{0\}$.

In what follows, we assume that ν is finite.

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ →

Let ν be a positive radial measure on \mathbb{B} , that is,

```
d\nu(x) = d\nu_*(r)d\sigma(\theta).
```

where $x = r\theta$, $r \in [0, 1)$ and $\theta \in S = \partial \mathbb{B}$.

In the case of radial measure ν , $supp\nu$ is not a uniqueness set for harmonic functions if and only if $\nu = c\delta_0$ (Dirac measure at 0).

Proposition (infinite case)

Let ν be a positive radial Borel measure on \mathbb{B} . If $\nu(\mathbb{B}) = \infty$, then $b_{\nu}^2 = \{0\}$.

In what follows, we assume that ν is finite.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロ > < 団 > < 団 > < 団 > < 団 > <

Let ν be a positive radial measure on \mathbb{B} , that is,

```
d\nu(x) = d\nu_*(r)d\sigma(\theta).
```

where $x = r\theta$, $r \in [0, 1)$ and $\theta \in S = \partial \mathbb{B}$.

In the case of radial measure ν , $supp\nu$ is not a uniqueness set for harmonic functions if and only if $\nu = c\delta_0$ (Dirac measure at 0).

Proposition (infinite case)

Let ν be a positive radial Borel measure on \mathbb{B} . If $\nu(\mathbb{B}) = \infty$, then $b_{\nu}^2 = \{0\}$.

In what follows, we assume that ν is finite.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

□ ► < E ► < E ►</p>

Let $\mathcal{H}_m = \mathcal{H}_m(\mathbb{R}^n)$ be the space of all harmonic homogeneous polynomials of degree *m* and for a set *A* in \mathbb{R}^n put

$$\mathcal{H}_m(A) := \{h|_A : h \in \mathcal{H}_m(\mathbb{R}^n)\}.$$

Let $S = \partial \mathbb{B}$ and σ denote by a surface measure on S. Then, the Hilbert space $L^2(S, \sigma) = L^2(S)$ admits the orthogonal decomposition

$$L^2(S) = \bigoplus_{m=0}^{\infty} \mathcal{H}_m(S).$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶▲圖▶▲圖▶▲圖▶

Lemma (Expansion)

Let f be a harmonic function on \mathbb{B} . Then there uniquely exist $\phi_m \in \mathcal{H}_m$ $(m \ge 0)$ such that

$$f = \sum_{m=0}^{\infty} \phi_m$$

<u>~</u>~

which converges uniformly on any compact subset of \mathbb{B} .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Prove that $\nu(\mathbb{B}) = \infty \Rightarrow b_{\nu}^2 = \{0\}$

By the expansion $f = \sum_{m=0}^{\infty} \phi_m \phi_m \in \mathcal{H}_m$, we have

$$\infty > \int_{\mathbb{B}} |f(x)|^2 d\nu(x) = \lim_{\epsilon \to 1} \int_0^{\epsilon} \int_S \left(\sum_{m=0}^{\infty} \phi_m(r\theta) \right)^2 d\sigma(\theta) d\nu_*(r)$$
$$= \lim_{\epsilon \to 1} \int_0^{\epsilon} \sum_{m=0}^{\infty} \int_S \phi_m(r\theta)^2 d\sigma(\theta) d\nu_*(r)$$
$$= \int_0^1 \sum_{m=0}^{\infty} r^{2m} ||\phi_m||^2_{L^2(S)} d\nu_*(r)$$
$$\geq ||\phi_m||^2_{L^2(S)} \int_0^1 r^{2m} d\nu_*(r).$$

This implies that $\phi_m = 0$ for any $m \ge 0$.

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Let ν be a positive finite radial Borel measure on \mathbb{B} , i.e., $d\nu = d\nu_* d\sigma$. If $supp\nu$ is not compact on \mathbb{B} , that is, $\nu_*([r, 1)) > 0$ for any $r \in [0, 1)$, then the following properties holds:

- For $x \in \mathbb{B}$, $|f(x)| \le C_x ||f||_{b^2_{\nu}}$.
- b_{ν}^2 is complete.
- b²_ν has the reproducing kernel R_ν(x, y), i.e., for x ∈ B there exists uniquely R_ν(x, ·) ∈ b²_ν such that for f ∈ b²_ν

$$f(x) = \int_{\mathbb{B}} R_{\nu}(x, y) f(y) d\nu(y).$$

5900

Proof

Let $r_0 \in [0, 1)$ and $x \in \mathbb{B}_{r_0}$. By the Poisson formula, we have

$$f(x) = \int_{S_r} P_r(x,\theta) f(\theta) d\sigma_r(\theta).$$

By multiplying $\nu_*([r_0, 1))$ both side, we have

$$f(x)\nu_*([r_0,1)) = \int_{r_0}^1 \int_{S_r} P_r(x,\theta)f(\theta)d\sigma_r(\theta)d\nu_*(r).$$

By the estimate for Poisson kernel as follow;

$$|P_r(x, \theta)| \le C(|x|, r_0)$$
 for $r_0 < r < 1$,

we have

$$|f(x)|^2 \nu_*([r_0,1)) \leq C(|x|,r_0) \int_{\mathbb{B}\setminus\mathbb{B}_{r_0}} |f(x)|^2 d\nu(x) \leq C(|x|,r_0) \|f\|_{b^2_{\nu}}.$$

5900

Proposition (completeness 2)

Let ν be a positive finite Borel measure on \mathbb{B} . Suppose $supp \nu$ be a uniqueness set for harmonic functions. If b_{ν}^2 is complete, then $\nu(\mathbb{B} \setminus K) > 0$ for any compact set $K \subset \mathbb{B}$.

Therefore, we have the following result.

Theorem

Let ν be a positive finite radial Borel measure on \mathbb{B} with $d\nu = d\nu_* d\sigma$. Then, b_{ν}^2 is complete if and only if $\nu_*([r, 1)) > 0$ for any $r \in [0, 1)$.

We define by M_{rad} the set of all positive finite radial Borel measure on \mathbb{B} satisfying $\nu_*([r, 1)) > 0$ for any $r \in [0, 1)$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Proposition (completeness 2)

Let ν be a positive finite Borel measure on \mathbb{B} . Suppose $supp \nu$ be a uniqueness set for harmonic functions. If b_{ν}^2 is complete, then $\nu(\mathbb{B} \setminus K) > 0$ for any compact set $K \subset \mathbb{B}$.

Therefore, we have the following result.

Theorem

Let ν be a positive finite radial Borel measure on \mathbb{B} with $d\nu = d\nu_* d\sigma$. Then, b_{ν}^2 is complete if and only if $\nu_*([r, 1)) > 0$ for any $r \in [0, 1)$.

We define by M_{rad} the set of all positive finite radial Borel measure on \mathbb{B} satisfying $\nu_*([r, 1)) > 0$ for any $r \in [0, 1)$.

500

Theorem (Orthogonal decomposition)

Let $\nu \in M_{rad}$. Then, we have the following orthogonal decomposition

$$b_{\nu}^2 = \bigoplus_{m=0}^{\infty} \mathcal{H}_m.$$

Denote by Z_m^{ν} the orthogonal projection onto \mathcal{H}_m .

$$Z^{\nu}_m f(x) = \int_{\mathbb{B}} Z^{\nu}_m(x, y) f(y) d\nu(y)$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Toeplitz operator

For a bounded measurable function ϕ on \mathbb{B} , we define Toeplitz operator $T_{\phi,\nu}$ on b_{ν}^2 by

$$egin{aligned} T_{\phi,
u}f(x) &= Q_
u[\phi f](x) \ &= \int_{\mathbb{B}} R_
u(x,y)f(y)\phi(y)d
u(y) ext{ for } f\in b_
u^2. \end{aligned}$$

Theorem (Spectrum of Toeplitz operator)

Let $\nu \in M_{rad}$ and a symbol function ϕ be bounded measurable. If ϕ is radial, that is, $\phi(x) = \phi_*(|x|)$, then the eigenvalues of the weighted Toeplitz operator $T_{\phi,\nu}$ are the following;

$$\lambda_m(T_{\phi,\nu}) = \frac{\int_0^1 r^{2m} \phi_*(r) d\nu_*(r)}{\int_0^1 r^{2m} d\nu_*(r)}$$

3

5900

<ロト < 回 > < 回 > < 回 > < 回 > <

Radialization of functions(Preparationfor an application)

For a function f on \mathbb{B} , we define the radicalization $\mathcal{R}f$ by

$$\mathcal{R}f(x) := \int_{U \in O(n)} R_{U^{-1}}f(x) d\lambda_{O(n)}(U)$$

for any $x \in \mathbb{B}$ where O(n) is the group of orthogonal matrices and $\lambda_{O(n)}$ is the normalized Haar measure on O(n) and $R_U f(x) := f(Ux)$. *f* is radial if and only if $\mathcal{R}f = f$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Radialization of operators

For an operator T on b_{ν}^2 , we define the radicalization $\mathcal{R}T$ by

$$\mathcal{R}T = \int_{U \in O(n)} R_U^* T R_U d\lambda_{O(n)}(U)$$

where the above integral means that for $f, g \in b_{\nu}^2$,

$$\langle (\mathcal{R}T)f,g\rangle = \int_{U\in O(n)} \langle R_U^*TR_Uf,g\rangle_{\nu}d\lambda_{O(n)}(U).$$

An operator *T* on b_{ν}^2 is called radial if $\mathcal{R}T = T$. Let $\nu \in M_{rad}$. If a function ϕ is bounded measurable on \mathbb{B} , then

$$\mathcal{R}T_{\phi,\nu}=T_{\mathcal{R}\phi,\nu}.$$

In particular, ϕ is radial, then $T_{\phi,\nu}$ is radial.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲ □ ▶ ▲ 트 ▶ ▲ 트 ▶

Radialization of operators

For an operator T on b_{ν}^2 , we define the radicalization $\mathcal{R}T$ by

$$\mathcal{R}T = \int_{U \in O(n)} R_U^* T R_U d\lambda_{O(n)}(U)$$

where the above integral means that for $f, g \in b_{\nu}^2$,

$$\langle (\mathcal{R}T)f,g\rangle = \int_{U\in O(n)} \langle R_U^*TR_Uf,g\rangle_{\nu}d\lambda_{O(n)}(U).$$

An operator *T* on b_{ν}^2 is called radial if $\mathcal{R}T = T$. Let $\nu \in M_{rad}$. If a function ϕ is bounded measurable on \mathbb{B} , then

$$\mathcal{R}T_{\phi,\nu}=T_{\mathcal{R}\phi,\nu}.$$

In particular, ϕ is radial, then $T_{\phi,\nu}$ is radial.

5900

By the basic properties for functional analysis, we can check the following lemma.

Lemma

Let ν be positive finite measure on \mathbb{B} and b_{ν}^2 be complete. Assume ϕ is positive and belong to $C(\overline{\mathbb{B}})$. If $\phi = 0$ on $\partial \mathbb{B}$, then $T_{\phi,\nu}$ is compact.

Conversely, we have the following result.

Theorem (compactness)

Let $\nu \in M_{rad}$, ϕ be positive and belong to $C(\overline{\mathbb{B}})$. If the Toeplitz operator $T_{\phi,\nu}$ is compact, then $\phi = 0$ on $\partial \mathbb{B}$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By the basic properties for functional analysis, we can check the following lemma.

Lemma

Let ν be positive finite measure on \mathbb{B} and b_{ν}^2 be complete. Assume ϕ is positive and belong to $C(\overline{\mathbb{B}})$. If $\phi = 0$ on $\partial \mathbb{B}$, then $T_{\phi,\nu}$ is compact.

Conversely, we have the following result.

Theorem (compactness)

Let $\nu \in M_{rad}$, ϕ be positive and belong to $C(\overline{\mathbb{B}})$. If the Toeplitz operator $T_{\phi,\nu}$ is compact, then $\phi = 0$ on $\partial \mathbb{B}$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Expansion of harmonic Bergman kernel

Lemma

Let $\nu \in M_{rad}$. Then, we have

$$R_{\nu}(x,y) = \sum_{m=0}^{\infty} Z_{m}^{\nu}(x,y) = \sum_{m=0}^{\infty} \frac{Z_{m}(x,y)}{(2m+n) \int_{0}^{1} r^{2m} d\nu_{*}(r)}$$

for any $x, y \in \mathbb{B}$.

・ 「 「 」 ・ 「 」 ・ 「 」 ・ 「 」 ・ 「 」 ・ (」 ・ (し ・ 」

Proposition

Let μ and ν belong to M_{rad} . If $\mu(A) \leq \nu(A)$ for any Borel set $A \subset \mathbb{B}$, then

 $R_\mu(x,x) \geq R_
u(x,x)$

Moreover, the boundary behavior of $R_{\nu}(x, x)$ depends on that of measure ν .

Theorem

Let
$$\mu$$
 and ν belong to M_{rad} . If
 $0 < \liminf_{r \to 1} \frac{\mu_*([r, 1))}{\nu_*([r, 1))} \leq \limsup_{r \to 1} \frac{\mu_*([r, 1))}{\nu_*([r, 1))} < \infty$, then
 $R_\mu(x, x) \approx R_\nu(x, x)$.

- Relation between spectrum $\lambda_m(T_{\phi,\nu})$ and averaging function $\hat{\phi}_{\delta}$.
- Relation between spectrum $\lambda_m(T_{\phi,\nu})$ and Berezin transform $\tilde{\phi}$.
- Estimate for $R_{\nu}(x, y)$.

5900

<ロト < 団 > < 団 > < 団 > < 団 > 三 三

Reference

- S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, New York, 1992.
- S. Grudsky and N. Vasilevski *Bergman-Toeplitz operators radial component influence*, Integr. equ. oper. theory **40** (2001), 16–33.
- Y. J. Lee, *Compact radial operators on the harmonic Bergman space*, J. Math. Kyoto Univ., Vol. 44 (2004), 769–777.
- T. Nakazi and M. Yamada, *Riesz's functions in weighted Hardy and Bergman spaces*, Can. J. Math., Vol. 48 (1996), 930–945.
- T.Nakazi and R.Yoneda, Compact Toeplitz operators with continuous symbols on weighted Bergman spaces, Glasgow Math. J., Vol 42 (2000), 31–35.
- K. Stroethoff, *Compact Toeplitz operators on weighted harmonic Bergman spaces*, J. Austral. Math. Soc., Vol 64 (1998), 136–148.

590

<ロト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>