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Harmonic Bergman space

1 < p< oo, QcCR”: bounded smooth domain.
bP(Q2) := {f : harmonic in Q and ||f||, < co}
bP : harmonic Bergman space.

@ bP(Q) C LP(Q): closed subspace
e f € b?(Q) has a reproducing property:

F(x) = /Q R(x, y)f(y)dy for x € Q

R(-,-) : harmonic Bergman kernel.
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Representation theorem

Theorem (T. 2012)

Let1 < p < oo and Q be a bounded smooth domain. Then, we can
choose a sequence {\;} in Q such that Ay ;, : (P — bP is a bounded
onto map, where the operator A, ;»,, is defined by

i=1

where r(x) denotes the distance between x and 0S).
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Fix a defining function 7 for Q s.t. |[Vn|? = 1 4 nw for some w € C=(Q).
B.R. Choe, H. Koo and H. Yi (2004) introduced the following kernel

1

Ri(x,y) = R(x,y) = 58y (P (Y)Rx(¥)).

and shown that Ry has the reproducing property.

Theorem (T. 2013)

Let1 < p < oo and Q2 be a smooth bounded domain. Then, we can
choose a sequence {\;} in Q such that Ay : (P — bP is a bounded onto
map, where the operator A; is defined by

1
Ai{ai}(x Za,R1 CRNIeY
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Interpolating sequence

Let denote V : bP(Q2) — IP by

Voo f = {r(A) P FOA) )

Itis known that Ay = Vg 1y, for 1 < p < oo, q: T+i=1.
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Interpolating sequence

Let denote V : bP(Q2) — IP by

Voo f = {r(Ai) P ()}
Itis knownthat As = Vg yyfor1 <p<oo,q: j+4=1.

Theorem (T. (to appear in RIMS kbékylroku bessatu))

Let1 < p < co. We can choose a positive constant pg satisfying the
following condition;

if{\i}; C Q satisfy quasi-hyperbolic distance p(\;, \;) > po for i # j,
then V : bP(Q2) — IP is bounded and onto.

YEM Xy

p(x,y) = inf / r(12)ds(z)
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The preceding works

Bergman type spaces are studied on several setting.

L2(D, dA) = {f: holo. on I, ||f||;2 < oo}
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The preceding works

Bergman type spaces are studied on several setting.

[2(D, dA) = {f: holo. on D, ||f|;2 < oo}

@ R.R. Coifman - R. Rochberg (1980) : holomorphic on unit ball in
(Cn

@ B.R. Choe - H. Yi (1998) : harmonic on upper half space in R"

@ K. Tanaka : harmonic on smooth bounded domain

Kiyoki Tanaka (Osaka City University) Harmonic Bergman spaces PH 2013 7/14



The preceding result

Theorem (Kang-Koo 2002)

Let Q be a smooth bounded domain and «. and 3 be multi-indices.
Then, there exist C, 3 > 0 and C > 0 such that for any x,y € Q

Cup

a nB
|Dy Dy R(x,y)| < d(x, y)r+lal+18]

and

R(x, x) > )7

where d(x,y) := r(x) + r(y) + |x — y| and r(x) is the distance between
x and boundary of Q2.

v
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Outline of the proof of representation theorem

Lemma (covering lemma)
Let0 < < }1. We can choose N (independ of 6), {\;} € Q and disjoint
covering {E;} for Q.

@ E; is measurable set for any i € N;

Q E; C B(\,dr(\)) foranyi € N;

© {B(\;,30r();))} is uniformly finite intersection with bound N

Remark.

If there exists a positive constant ¢ > 0 such that {B(\;, cr();))} is
uniformly finite intersection, then A ¢,y and V), ., are bounded for
1< p<oo.
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We define the operators Up, () : b° — (P and S,y : b? — bP as
following;

Spf(X) = 3 RO A ON)IE
i=1
—(1-1
Up, 03 () == {IEi| f(Ai)r(A) (1 p)n}i

where { E;}; is the disjoint covering of Q2 such that \; € E; forany i € N.
Because S = Ao U, we may show that S is bijective map. By
calculating ||S — /d||, we can give the condition that S is bijective.
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Outline of the proof of interpolating sequence theorem

We assume that there exist § > 0 such that {B()\;, 6r();))} is disjoint.
We put

W, {a} = Vo Ala} = {r(y) Za, O, M) r(a) M.

We choose the {)\;}; such that the operator W is bijective.
We put diagonal part of W

D{a;j} := {a;R()\j, \))r(\)"}

and off diagonal part of W

Efa} == {rOy)P S @Ry A)rn) 97,
i#f
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Because D : bijective and W = D+ E, || E|| < = W : bijective.

1
[
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Because D : bijectiveand W =D+ E, || E|| < HD1_—1H = W : bijective.

Moreover, since R(x, x)r(x)" = 1, ||D|| =~ 1. We have only to give the
estimate for ||E||.
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Because D : bijectiveand W =D+ E, || E|| < HD1_—1H = W : bijective.

Moreover, since R(x, x)r(x)" = 1, ||D|| =~ 1. We have only to give the
estimate for ||E||.

oI=

—n(p—1) /= 1 1
IE{atle <6~ o (X lalPrins 3o ron™ a1R0y.A))
i=1 i
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Because D : bijectiveand W =D+ E, || E|| < HD1_—1H = W : bijective.

Moreover, since R(x, x)r(x)" = 1, ||D|| =~ 1. We have only to give the
estimate for ||E||.

oI=

—n(p—1) /= 1 1
IE{atle <6~ o (X lalPrins 3o ron™ a1R0y.A))
i=1 i

We calculate

I’()\,-)% Zr()‘j)n_%‘R(Aj,)\/)‘ < / Mdz

oy a\Es(yy  d(2,70)"
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Lemma
There exist constants C; > 0 and C, > 0 such that for any x,y € Q

1 ep(-2g
d(x,y) = min{r(x),r(y)}
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Lemma
There exist constants C; > 0 and C, > 0 such that for any x,y € Q

1 ep(-2g
d(x,y) = min{r(x),r(y)}

By using quasi-hyperbolic distance condition p(A;, A;) > po, we have

1 1
r(\j)ar(z) a po — Cy
—— 2 dz < exp(—e¢ .
/51\55(A,-) d(z, )" S exp(—<( C» )
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