Operators on harmonic Bergman spaces

Kiyoki Tanaka

Osaka City University Advanced Mathematical Institute (OCAMI)

February, 7, 2014 / AKOOS-PNU International Conference 2014

Kiyoki Tanaka (Osaka City University)

Harmonic Bergman spaces

PH 2014 1 / 37

Introduction and motivation

- 2 harmonic Bergman space on the unit ball
- armonic Bergman space on smooth bounded domain
- 4 Modified harmonic Bergman kernel
- 5 Application for Toeplitz operator

We denote the weighted Bergman space on the unit disc ${\mathbb D}$ by

 $L^2_a(\mathbb{D}, dA_\alpha) := \{f : \mathbb{D} \to \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_{2,\alpha} < \infty\}$

where $\alpha > -1$,

$$dA_{\alpha}(z) := C_{\alpha}(1-|r|^2)^{\alpha}d\theta dr$$

 C_{α} is the normalized constant.

norm :
$$\|f\|_{2,\alpha} := \left(\int_{\mathbb{D}} |f|^2 dA_{\alpha}\right)^{\frac{1}{2}}$$

In 1922, S. Bergman stated this space (the case $\alpha = 0$, no-weighted case).

Kiyoki Tanaka (Osaka City University)

▲圖▶ ▲ 国▶ ▲ 国

We denote the weighted Bergman space on the unit disc ${\mathbb D}$ by

 $L^2_a(\mathbb{D}, dA_\alpha) := \{ f : \mathbb{D} \to \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_{2,\alpha} < \infty \}$

where $\alpha > -1$,

$$dA_{\alpha}(z) := C_{\alpha}(1-|r|^2)^{\alpha}d\theta dr$$

 C_{α} is the normalized constant.

norm :
$$||f||_{2,\alpha} := \left(\int_{\mathbb{D}} |f|^2 dA_{\alpha}\right)^{\frac{1}{2}}$$

In 1922, S. Bergman stated this space (the case $\alpha = 0$, no-weighted case).

▲圖▶ ▲ 国▶ ▲ 国

We denote the weighted Bergman space on the unit disc ${\mathbb D}$ by

 $L^2_a(\mathbb{D}, dA_\alpha) := \{ f : \mathbb{D} \to \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_{2,\alpha} < \infty \}$

where $\alpha > -1$,

$$dA_{\alpha}(z) := C_{\alpha}(1-|r|^2)^{\alpha}d\theta dr$$

 C_{α} is the normalized constant.

norm :
$$||f||_{2,\alpha} := \left(\int_{\mathbb{D}} |f|^2 dA_{\alpha}\right)^{\frac{1}{2}}$$

In 1922, S. Bergman stated this space (the case $\alpha = 0$, no-weighted case).

A (10) A (10) A (10)

- $L^2_a(\mathbb{D}, dA_\alpha) \subset L^2(\mathbb{D}, dA_\alpha)$: closed subspace
- $L^2_a(\mathbb{D}, dA_\alpha)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \exists K_\alpha(z, \cdot) \in L^2_a(\mathbb{D}, dA_\alpha)$ s.t. $\forall f \in L^2_a(\mathbb{D}, dA_\alpha)$

$$f(z) = \int_{\mathbb{D}} K_{\alpha}(z, w) f(w) dA_{\alpha}(w)$$
 (reproducing property)

• $K_{\alpha}(z, w) = \overline{K_{\alpha}(w, z)}$: anti-symmetric

$$K_{\alpha}(z,w) = \frac{1}{(1-z\bar{w})^{2+\alpha}}$$

- $L^2_a(\mathbb{D}, dA_\alpha) \subset L^2(\mathbb{D}, dA_\alpha)$: closed subspace
- $L^2_a(\mathbb{D}, dA_\alpha)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \exists \overline{K_\alpha(z, \cdot)} \in L^2_a(\mathbb{D}, dA_\alpha)$ s.t. $\forall f \in L^2_a(\mathbb{D}, dA_\alpha)$

$$f(z) = \int_{\mathbb{D}} K_{\alpha}(z, w) f(w) dA_{\alpha}(w)$$
 (reproducing property)

•
$$K_{\alpha}(z,w) = \overline{K_{\alpha}(w,z)}$$
 : anti-symmetric

$$K_{\alpha}(z,w) = \frac{1}{(1-z\bar{w})^{2+\alpha}}$$

- $L^2_a(\mathbb{D}, dA_\alpha) \subset L^2(\mathbb{D}, dA_\alpha)$: closed subspace
- $L^2_a(\mathbb{D}, dA_\alpha)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \exists \overline{K_\alpha(z, \cdot)} \in L^2_a(\mathbb{D}, dA_\alpha)$ s.t. $\forall f \in L^2_a(\mathbb{D}, dA_\alpha)$

$$f(z) = \int_{\mathbb{D}} K_{\alpha}(z, w) f(w) dA_{\alpha}(w)$$
 (reproducing property)

•
$$K_{\alpha}(z, w) = \overline{K_{\alpha}(w, z)}$$
: anti-symmetric
• $K_{\alpha}(z, w) = \frac{1}{(1 - z\overline{w})^2}$

.

- $L^2_a(\mathbb{D}, dA_\alpha) \subset L^2(\mathbb{D}, dA_\alpha)$: closed subspace
- $L^2_a(\mathbb{D}, dA_\alpha)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \exists \overline{K_\alpha(z, \cdot)} \in L^2_a(\mathbb{D}, dA_\alpha)$ s.t. $\forall f \in L^2_a(\mathbb{D}, dA_\alpha)$

$$f(z) = \int_{\mathbb{D}} K_{\alpha}(z, w) f(w) dA_{\alpha}(w)$$
 (reproducing property)

•
$$K_{lpha}(z,w) = \overline{K_{lpha}(w,z)}$$
 : anti-symmetric
• $K_{lpha}(z,w) = rac{1}{(1-zar w)^{2+lpha}}$

Bergman projection, Toeplitz operator on Bergman space

We consider the orthogonal projection Q_{α} from $L^{2}(\mathbb{D}, dA_{\alpha})$ to $L^{2}_{a}(\mathbb{D}, dA_{\alpha})$.

It is well-known that for $f \in L^2(\mathbb{D}, dA_\alpha)$, Q_α has the form

$$Q_{\alpha}f(x) = \int_{\mathbb{D}} K_{\alpha}(x,y)f(y)dA_{\alpha}(y).$$

For a function φ , we denote Toeplitz operator $\mathbb{T}_{\varphi}^{(\alpha)}$ on $L^2_a(\mathbb{D}, dA_{\alpha})$ by

$$\mathbb{T}_{\varphi}^{(\alpha)}f(x) := Q_{\alpha}(f\varphi)(x) = \int_{\mathbb{D}} K_{\alpha}(x, y)f(y)\varphi(y)dA_{\alpha}(y)$$

Kiyoki Tanaka (Osaka City University)

Bergman projection, Toeplitz operator on Bergman space

We consider the orthogonal projection Q_{α} from $L^{2}(\mathbb{D}, dA_{\alpha})$ to $L^{2}_{a}(\mathbb{D}, dA_{\alpha})$. It is well-known that for $f \in L^{2}(\mathbb{D}, dA_{\alpha})$, Q_{α} has the form

$$Q_{\alpha}f(x) = \int_{\mathbb{D}} K_{\alpha}(x,y)f(y)dA_{\alpha}(y).$$

For a function φ , we denote Toeplitz operator $\mathbb{T}_{\varphi}^{(\alpha)}$ on $L^2_a(\mathbb{D}, dA_{\alpha})$ by

$$\mathbb{T}_{\varphi}^{(\alpha)}f(x) := Q_{\alpha}(f\varphi)(x) = \int_{\mathbb{D}} K_{\alpha}(x,y)f(y)\varphi(y)dA_{\alpha}(y)$$

Kiyoki Tanaka (Osaka City University)

Bergman projection, Toeplitz operator on Bergman space

We consider the orthogonal projection Q_{α} from $L^{2}(\mathbb{D}, dA_{\alpha})$ to $L^{2}_{a}(\mathbb{D}, dA_{\alpha})$.

It is well-known that for $f \in L^2(\mathbb{D}, dA_\alpha)$, Q_α has the form

$$\mathcal{Q}_{lpha}f(x)=\int_{\mathbb{D}}\mathcal{K}_{lpha}(x,y)f(y)d\mathcal{A}_{lpha}(y).$$

For a function φ , we denote Toeplitz operator $\mathbb{T}_{\varphi}^{(\alpha)}$ on $L^2_a(\mathbb{D}, dA_{\alpha})$ by

$$\mathbb{T}_{\varphi}^{(\alpha)}f(x) := Q_{\alpha}(f\varphi)(x) = \int_{\mathbb{D}} K_{\alpha}(x,y)f(y)\varphi(y)dA_{\alpha}(y)$$

We put

$$H(z):=rac{\partial^2}{2\partial z\partial ar z}\log K(z,z)=rac{1}{(1-|z|^2)^2}.$$

Then, $\sqrt{H(z)}ds(z)$, where *ds* is Euclidean length element, is called Bergman metric (or Poincaré metric).

Problem

We can consider the Bergman kernel on a general domain. Then, we don't have explicit form of Bergman kernel.

How domain has good estimate?

Answer(?)

We can only answer that a "certain" domain (for example, a domain has smooth boundary, upper-half plane) is OK.

But, we don't have completely answer. (on the setting of today's talk, the kernel has estimate)

< ロ > < 同 > < 回 > < 回 >

We put

$$H(z):=rac{\partial^2}{2\partial z\partial ar z}\log K(z,z)=rac{1}{(1-|z|^2)^2}.$$

Then, $\sqrt{H(z)}ds(z)$, where *ds* is Euclidean length element, is called Bergman metric (or Poincaré metric).

Problem

We can consider the Bergman kernel on a general domain. Then, we don't have explicit form of Bergman kernel. How domain has good estimate?

Answer(?)

We can only answer that a "certain" domain (for example, a domain has smooth boundary, upper-half plane) is OK.

But, we don't have completely answer. (on the setting of today's talk, the kernel has estimate)

< ロ > < 同 > < 回 > < 回 >

We put

$$H(z) := rac{\partial^2}{2\partial z\partial ar z} \log K(z,z) = rac{1}{(1-|z|^2)^2}.$$

Then, $\sqrt{H(z)}ds(z)$, where *ds* is Euclidean length element, is called Bergman metric (or Poincaré metric).

Problem

We can consider the Bergman kernel on a general domain. Then, we don't have explicit form of Bergman kernel.

How domain has good estimate?

Answer(?)

We can only answer that a "certain" domain (for example, a domain has smooth boundary, upper-half plane) is OK.

But, we don't have completely answer. (on the setting of today's talk, the kernel has estimate)

・ロト ・ 同ト ・ ヨト ・ ヨ

We consider the map $\varphi \mapsto \mathbb{T}_{\varphi}^{(\alpha)}$. This map has the following properties:

 $lim_{\alpha \to \infty} \|\mathbb{T}_{\varphi}^{(\alpha)}\| = \|\varphi\|_{\infty} \text{ for } \varphi, \psi \in C(\bar{\mathbb{D}})$

 $\begin{aligned} & \quad \\ \\ & \quad \\$

In the observation as quantum physic, this relation seems to be quantization, that is,

 $\{ \begin{array}{c} \text{Classical mechanics} \} \longrightarrow \{ \text{quantum mechanics} \} \\ \varphi \longrightarrow \mathbb{T}_{\varphi}^{(\alpha)} \end{array}$

Problem Characterize Toeplitz operators. For example, \mathbb{T}_{φ} is bounded $\Leftrightarrow \varphi$ has something conditions. We discuss this problem later under the another setting (which is similar setting).

Kiyoki Tanaka (Osaka City University)

Harmonic Bergman spaces

We consider the map $\varphi \mapsto \mathbb{T}_{\varphi}^{(\alpha)}$. This map has the following properties: • $\varphi \mapsto \mathbb{T}_{\varphi}^{(\alpha)}$ is linear

$$\begin{array}{l} & \displaystyle \operatorname{lim}_{\alpha \to \infty} \|\mathbb{T}_{\varphi}^{(\alpha)}\| = \|\varphi\|_{\infty} \text{ for } \varphi, \psi \in C(\bar{\mathbb{D}}) \\ & \displaystyle \operatorname{lim}_{\alpha \to \infty} \|\alpha[\mathbb{T}_{\varphi}^{(\alpha)}, \mathbb{T}_{\psi}^{(\alpha)}] - i\mathbb{T}_{\{\varphi,\psi\}}^{(\alpha)}\| = 0 \text{ for } \varphi, \psi \in C^{\infty}(\bar{\mathbb{D}}) \\ & \displaystyle \operatorname{where} [\mathbb{T}_{\varphi}^{(\alpha)}, \mathbb{T}_{\psi}^{(\alpha)}] := \mathbb{T}_{\varphi}^{(\alpha)}\mathbb{T}_{\psi}^{(\alpha)} - \mathbb{T}_{\psi}^{(\alpha)}\mathbb{T}_{\varphi}^{(\alpha)} \text{ and} \\ & \displaystyle \{\varphi, \psi\} := i(1 - |z|^2)^2 \left(\partial\varphi(z)\bar{\partial}\psi(z) - \bar{\partial}\varphi(z)\partial\psi(z)\right) \end{array}$$

In the observation as quantum physic, this relation seems to be quantization, that is,

 $\{ \begin{array}{c} \{ \text{Classical mechanics} \} & \longrightarrow \\ \varphi & \longrightarrow \\ & \mathbb{T}_{\varphi}^{(\alpha)} \end{array} \}$

Problem Characterize Toeplitz operators. For example, \mathbb{T}_{φ} is bounded $\Leftrightarrow \varphi$ has something conditions. We discuss this problem later under the another setting (which is similar setting).

Kiyoki Tanaka (Osaka City University)

Harmonic Bergman spaces

We consider the map $\varphi \mapsto \mathbb{T}_{\varphi}^{(\alpha)}$. This map has the following properties: • $\varphi \mapsto \mathbb{T}_{\varphi}^{(\alpha)}$ is linear

$$\begin{array}{l} & \displaystyle \operatorname{lim}_{\alpha \to \infty} \|\mathbb{T}_{\varphi}^{(\alpha)}\| = \|\varphi\|_{\infty} \text{ for } \varphi, \psi \in C(\bar{\mathbb{D}}) \\ & \displaystyle \operatorname{lim}_{\alpha \to \infty} \|\alpha[\mathbb{T}_{\varphi}^{(\alpha)}, \mathbb{T}_{\psi}^{(\alpha)}] - i\mathbb{T}_{\{\varphi,\psi\}}^{(\alpha)}\| = 0 \text{ for } \varphi, \psi \in C^{\infty}(\bar{\mathbb{D}}) \\ & \displaystyle \operatorname{where} [\mathbb{T}_{\varphi}^{(\alpha)}, \mathbb{T}_{\psi}^{(\alpha)}] := \mathbb{T}_{\varphi}^{(\alpha)}\mathbb{T}_{\psi}^{(\alpha)} - \mathbb{T}_{\psi}^{(\alpha)}\mathbb{T}_{\varphi}^{(\alpha)} \text{ and} \\ & \displaystyle \{\varphi, \psi\} := i(1 - |z|^2)^2 \left(\partial\varphi(z)\bar{\partial}\psi(z) - \bar{\partial}\varphi(z)\partial\psi(z)\right) \end{array}$$

In the observation as quantum physic, this relation seems to be quantization, that is,

 $\{ \begin{array}{ccc} \{ \text{Classical mechanics} \} & \longrightarrow & \{ \text{quantum mechanics} \} \\ \varphi & \longrightarrow & \mathbb{T}_{\varphi}^{(\alpha)} \end{array}$

Problem Characterize Toeplitz operators. For example, \mathbb{T}_{φ} is bounded $\Leftrightarrow \varphi$ has something conditions. We discuss this problem later under the another setting (which is similar setting).

Kiyoki Tanaka (Osaka City University)

Harmonic Bergman spaces

We consider the map $\varphi \mapsto \mathbb{T}_{\varphi}^{(\alpha)}$. This map has the following properties: • $\varphi \mapsto \mathbb{T}_{\varphi}^{(\alpha)}$ is linear

$$\begin{array}{l} \textbf{2} \quad \lim_{\alpha \to \infty} \|\mathbb{T}_{\varphi}^{(\alpha)}\| = \|\varphi\|_{\infty} \text{ for } \varphi, \psi \in C(\bar{\mathbb{D}}) \\ \textbf{3} \quad \lim_{\alpha \to \infty} \|\alpha[\mathbb{T}_{\varphi}^{(\alpha)}, \mathbb{T}_{\psi}^{(\alpha)}] - i\mathbb{T}_{\{\varphi,\psi\}}^{(\alpha)}\| = 0 \text{ for } \varphi, \psi \in C^{\infty}(\bar{\mathbb{D}}) \\ \text{ where } [\mathbb{T}_{\varphi}^{(\alpha)}, \mathbb{T}_{\psi}^{(\alpha)}] := \mathbb{T}_{\varphi}^{(\alpha)}\mathbb{T}_{\psi}^{(\alpha)} - \mathbb{T}_{\psi}^{(\alpha)}\mathbb{T}_{\varphi}^{(\alpha)} \text{ and} \\ \text{ for } \varphi \in C^{\infty}(\bar{\mathbb{D}}) \\ \text{ where } [\mathbb{T}_{\varphi}^{(\alpha)}, \mathbb{T}_{\psi}^{(\alpha)}] := \mathbb{T}_{\varphi}^{(\alpha)}\mathbb{T}_{\psi}^{(\alpha)} - \mathbb{T}_{\psi}^{(\alpha)}\mathbb{T}_{\varphi}^{(\alpha)} \text{ and} \\ \text{ for } \varphi \in C^{\infty}(\bar{\mathbb{D}}) \\$$

$$\{\varphi,\psi\} := i(1-|z|^2)^2 \left(\partial\varphi(z)\bar{\partial}\psi(z) - \bar{\partial}\varphi(z)\partial\psi(z)\right)$$

In the observation as quantum physic, this relation seems to be quantization, that is,

 $\{ \begin{array}{ccc} \{ \text{Classical mechanics} \} & \longrightarrow & \{ \text{quantum mechanics} \} \\ \varphi & \longrightarrow & \mathbb{T}_{\varphi}^{(\alpha)} \end{array}$

Problem Characterize Toeplitz operators. For example, \mathbb{T}_{φ} is bounded $\Leftrightarrow \varphi$ has something conditions. We discuss this problem later under the another setting (which is similar setting).

Kiyoki Tanaka (Osaka City University)

Harmonic Bergman spaces

PH 2014 7 / 37

We comment the example of result on Toeplitz operator. Let φ be the bounded radial function (, that is, $\varphi(z) = \varphi(|z|)$) on \mathbb{D} . It is known the eigenvalue of \mathbb{T}_{φ} : $m \in \mathbb{N}_0$

$$\lambda_m(\mathbb{T}_{\varphi}) = \frac{\left(\int_0^1 \varphi(r) r^{2m+1} (1-r^2)^{\alpha} dr\right)^{\frac{1}{2}}}{\left(\int_0^1 r^{2m+1} (1-r^2)^{\alpha} dr\right)^{\frac{1}{2}}}.$$

and

$$\mathbb{T}_{\varphi}$$
: compact $\Leftrightarrow \lim_{m \to \infty} \lambda_m(\mathbb{T}_{\varphi}) = 0.$

- **→ → →**

We comment the example of result on Toeplitz operator. Let φ be the bounded radial function (, that is, $\varphi(z) = \varphi(|z|)$) on \mathbb{D} . It is known the eigenvalue of \mathbb{T}_{φ} : $m \in \mathbb{N}_0$

$$\lambda_m(\mathbb{T}_{\varphi}) = \frac{\left(\int_0^1 \varphi(r) r^{2m+1} (1-r^2)^{\alpha} dr\right)^{\frac{1}{2}}}{\left(\int_0^1 r^{2m+1} (1-r^2)^{\alpha} dr\right)^{\frac{1}{2}}}.$$

and

$$\mathbb{T}_{\varphi}$$
: compact $\Leftrightarrow \lim_{m \to \infty} \lambda_m(\mathbb{T}_{\varphi}) = 0.$

- **→ → →**

$$L^2_a(\mathbb{D}, dA) := \{ f : \mathbb{D} \to \mathbb{C} : f : analytic in \mathbb{D} and ||f||_2 < \infty \},$$

- exponent $2 \rightarrow p$.
- measure *A* (norm $\|\cdot\|_{2,\alpha}$) \rightarrow another weighted measure.
- analytic \rightarrow solutions of differential equation.
- domain $\mathbb{D} \to$ "general" domain.

- B → - 4 B

$$L^2_a(\mathbb{D}, dA) := \{ f : \mathbb{D} \to \mathbb{C} : f : analytic in \mathbb{D} and ||f||_2 < \infty \},$$

• exponent $2 \rightarrow p$.

- measure A (norm $\|\cdot\|_{2,\alpha}$) \rightarrow another weighted measure.
- analytic \rightarrow solutions of differential equation.
- domain $\mathbb{D} \to$ "general" domain.

★ ∃ →

$$L^2_a(\mathbb{D}, dA) := \{ f : \mathbb{D} \to \mathbb{C} : f : analytic in \mathbb{D} and ||f||_2 < \infty \},$$

- exponent $2 \rightarrow p$.
- measure *A* (norm $\|\cdot\|_{2,\alpha}$) \rightarrow another weighted measure.
- analytic \rightarrow solutions of differential equation.
- domain $\mathbb{D} \to$ "general" domain.

- B → - 4 B

$$L^2_a(\mathbb{D}, dA) := \{ f : \mathbb{D} \to \mathbb{C} : f : analytic in \mathbb{D} and ||f||_2 < \infty \},$$

- exponent $2 \rightarrow p$.
- measure *A* (norm $\|\cdot\|_{2,\alpha}$) \rightarrow another weighted measure.
- analytic \rightarrow solutions of differential equation.
- domain $\mathbb{D} \to$ "general" domain.

- B → - 4 B

$$L^2_a(\mathbb{D}, dA) := \{ f : \mathbb{D} \to \mathbb{C} : f : analytic in \mathbb{D} and ||f||_2 < \infty \},$$

- exponent $2 \rightarrow p$.
- measure *A* (norm $\|\cdot\|_{2,\alpha}$) \rightarrow another weighted measure.
- analytic \rightarrow solutions of differential equation.
- domain $\mathbb{D} \to$ "general" domain.

- *b^p*(Ω) ⊂ *L^p*(Ω): closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- *f* ∈ *b*²(Ω) has a reproducing property: for *x* ∈ Ω, there exists unique *R*(*x*, ·) ∈ *b*²(Ω)

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

 $R(\cdot, \cdot)$: harmonic Bergman kernel.

- b^ρ(Ω) ⊂ L^ρ(Ω): closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- *f* ∈ *b*²(Ω) has a reproducing property: for *x* ∈ Ω, there exists unique *R*(*x*, ·) ∈ *b*²(Ω)

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

 $R(\cdot, \cdot)$: harmonic Bergman kernel.

- *b^ρ*(Ω) ⊂ *L^ρ*(Ω): closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- *f* ∈ *b*²(Ω) has a reproducing property: for *x* ∈ Ω, there exists unique *R*(*x*, ·) ∈ *b*²(Ω)

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

 $R(\cdot, \cdot)$: harmonic Bergman kernel.

- E 🕨

- *b^ρ*(Ω) ⊂ *L^ρ*(Ω): closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- *f* ∈ *b*²(Ω) has a reproducing property: for *x* ∈ Ω, there exists unique *R*(*x*, ·) ∈ *b*²(Ω)

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

 $R(\cdot, \cdot)$: harmonic Bergman kernel.

- *b^ρ*(Ω) ⊂ *L^ρ*(Ω): closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- *f* ∈ *b*²(Ω) has a reproducing property: for *x* ∈ Ω, there exists unique *R*(*x*, ·) ∈ *b*²(Ω)

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

 $R(\cdot, \cdot)$: harmonic Bergman kernel.

properties for harmonic Bergman kernel

We introduce the properties for harmonic Bergman kernel.

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2}^2 = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x) e_m(y)$$

for $x, y \in \Omega$.

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2}^2 = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x) e_m(y)$$

for $x, y \in \Omega$.

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2}^2 = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x) e_m(y)$$

for $x, y \in \Omega$.

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2}^2 = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x) e_m(y)$$

for $x, y \in \Omega$.

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2}^2 = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x) e_m(y)$$

for $x, y \in \Omega$.

PH 2014 11 / 37
We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$. It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x, y)f(y)dy.$$

For a function φ , we denote Toeplitz operator T_{φ} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x, y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator T_{μ} on $b^{2}(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$. It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x, y) f(y) dy.$$

For a function φ , we denote Toeplitz operator T_{φ} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x,y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator T_{μ} on $b^2(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$. It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x, y) f(y) dy.$$

For a function φ , we denote Toeplitz operator T_{φ} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x,y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator T_{μ} on $b^{2}(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

A (1) > A (2) > A

We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$. It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x,y)f(y)dy.$$

For a function φ , we denote Toeplitz operator T_{φ} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x,y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator T_{μ} on $b^2(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

< 🗇 🕨 < 🖻 🕨

When $\Omega = \mathbb{B}$ (unit ball),

$$R(x,y) = \frac{(n-4)|x|^4|y|^4 + (8x \cdot y - 2n - 4)|x|^2|y|^2 + n}{n|\mathbb{B}|((1-|x|^2)(1-|y|^2) + |x-y|^2)^{1+\frac{n}{2}}}$$

and

$$R_{\mathbb{B}}(x,x) = \frac{(n-4)|x|^4 + 2n|x|^2 + n}{n|\mathbb{B}|(1-|x|^2)^n}$$

Kiyoki Tanaka (Osaka City University)

Harmonic Bergman spaces

PH 2014 13 / 37

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

When $\Omega = \mathbb{B}$: unit ball, $b^{p}(\mathbb{B}) \subset b^{q}(\mathbb{B})$ $(1 \leq q .$ $<math>b^{p}(\mathbb{B})^{*} \simeq b^{q}(\mathbb{B})$ (1 $<math>f \in b^{p}(\mathbb{B})$ $(1 \leq p \leq \infty)$ has the reproducing property

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

Harmonic Bergman projection *P* is extended from $L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ $(1 and <math>P : L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded.

・ 何 ト ・ ヨ ト ・ ヨ

When $\Omega = \mathbb{B}$: unit ball, $b^{p}(\mathbb{B}) \subset b^{q}(\mathbb{B}) \ (1 \leq q .$ $<math>b^{p}(\mathbb{B})^{*} \simeq b^{q}(\mathbb{B}) \ (1$

 $f \in b^{p}(\mathbb{B}) \ (1 \leq p \leq \infty)$ has the reproducing property

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

Harmonic Bergman projection *P* is extended from $L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ $(1 and <math>P : L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded.

A (10) A (10) A (10)

When $\Omega = \mathbb{B}$: unit ball, $b^{p}(\mathbb{B}) \subset b^{q}(\mathbb{B})$ $(1 \leq q .$ $<math>b^{p}(\mathbb{B})^{*} \simeq b^{q}(\mathbb{B})$ (1 $<math>f \in b^{p}(\mathbb{B})$ $(1 \leq p \leq \infty)$ has the reproducing property

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

Harmonic Bergman projection *P* is extended from $L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ $(1 and <math>P : L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded.

.

When $\Omega = \mathbb{B}$: unit ball, $b^{p}(\mathbb{B}) \subset b^{q}(\mathbb{B})$ $(1 \leq q .$ $<math>b^{p}(\mathbb{B})^{*} \simeq b^{q}(\mathbb{B})$ (1 $<math>f \in b^{p}(\mathbb{B})$ $(1 \leq p \leq \infty)$ has the reproducing property

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

Harmonic Bergman projection *P* is extended from $L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ (1) and*P* $: <math>L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded.

For $\alpha > -1$, we consider the weighted harmonic Bergman space $b^p_{\alpha}(\mathbb{B})$ denoted by

$$b^p_{lpha}(\mathbb{B}) := \{f: \text{ harmonic on } \mathbb{B} \text{ and } \|f\|_{p, lpha} < \infty\}$$

where

$$\|f\|_{p,lpha} := \left(\int_{\mathbb{B}} |f(x)|^p dV_{lpha}(x)\right)^{\frac{1}{p}}$$

and $dV_{\alpha}(x) = (1 - |x|^2)^{\alpha} dx$.

By same method, $f \in b^2_{\alpha}(\mathbb{B})$ has a reproducing property: for $x \in \mathbb{B}$, there exists unique $R_{\alpha}(x, \cdot) \in b^2_{\alpha}(\mathbb{B})$

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(y) dV_{\alpha}(y).$$

Orthogonal projection P_{α} form $L^{2}(\mathbb{B}, dV_{\alpha})$ to $b_{\alpha}^{2}(\mathbb{B})$ has the form

$$P_{\alpha}f(x) = \int_{\mathbb{B}} R_{\alpha}(x,y)f(y)dV_{\alpha}(y).$$

 P_{α} is extended from $L^{p}(\mathbb{B}, dV_{\alpha}) \rightarrow b_{\alpha}^{p}(\mathbb{B})$ $(1 and <math>P_{\alpha} : L^{p}(\mathbb{B}, dV_{\alpha}) \rightarrow b_{\alpha}^{p}(\mathbb{B})$ is bounded.

Kiyoki Tanaka (Osaka City University)

- A 🖻 🕨

By same method, $f \in b^2_{\alpha}(\mathbb{B})$ has a reproducing property: for $x \in \mathbb{B}$, there exists unique $R_{\alpha}(x, \cdot) \in b^2_{\alpha}(\mathbb{B})$

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(y) dV_{\alpha}(y).$$

Orthogonal projection P_{α} form $L^{2}(\mathbb{B}, dV_{\alpha})$ to $b_{\alpha}^{2}(\mathbb{B})$ has the form

$$P_{\alpha}f(x) = \int_{\mathbb{B}} R_{\alpha}(x,y)f(y)dV_{\alpha}(y).$$

 P_{α} is extended from $L^{p}(\mathbb{B}, dV_{\alpha}) \rightarrow b_{\alpha}^{p}(\mathbb{B})$ $(1 and <math>P_{\alpha} : L^{p}(\mathbb{B}, dV_{\alpha}) \rightarrow b_{\alpha}^{p}(\mathbb{B})$ is bounded.

Kiyoki Tanaka (Osaka City University)

< 🗇 🕨 < 🖻 🕨 <

By same method, $f \in b^2_{\alpha}(\mathbb{B})$ has a reproducing property: for $x \in \mathbb{B}$, there exists unique $R_{\alpha}(x, \cdot) \in b^2_{\alpha}(\mathbb{B})$

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(y) dV_{\alpha}(y).$$

Orthogonal projection P_{α} form $L^{2}(\mathbb{B}, dV_{\alpha})$ to $b_{\alpha}^{2}(\mathbb{B})$ has the form

$$P_{lpha}f(x) = \int_{\mathbb{B}} R_{lpha}(x,y)f(y)dV_{lpha}(y).$$

 P_{α} is extended from $L^{p}(\mathbb{B}, dV_{\alpha}) \rightarrow b_{\alpha}^{p}(\mathbb{B})$ $(1 and <math>P_{\alpha} : L^{p}(\mathbb{B}, dV_{\alpha}) \rightarrow b_{\alpha}^{p}(\mathbb{B})$ is bounded.

Kiyoki Tanaka (Osaka City University)

Let $\alpha > 0$. Then,

- $b^{p}(\mathbb{B}) \subset b^{p}_{\alpha}(\mathbb{B}).$
- For $x, y \in \mathbb{B}$,

$$egin{aligned} &R_lpha(x,x)pproxrac{1}{(1-|x|)^{n+lpha}}\ &R_lpha(x,y)\lesssimrac{1}{|x-y|^{n+lpha}} \end{aligned}$$

• $P_{\alpha}: L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded for $1 \leq p$. $P_{\alpha}f(x) = \int_{\mathbb{B}} f(y)R_{\alpha}(x,y)(1-|y|^{2})^{\alpha}dy.$

Kiyoki Tanaka (Osaka City University)

PH 2014 17 / 37

・ 何 ト ・ ヨ ト ・ ヨ

Let $\alpha > 0$. Then, • $b^{p}(\mathbb{B}) \subset b^{p}_{\alpha}(\mathbb{B})$.

• For $x, y \in \mathbb{B}$,

$$egin{aligned} R_lpha(x,x) &pprox rac{1}{(1-|x|)^{n+lpha}}\ R_lpha(x,y) &\lesssim rac{1}{|x-y|^{n+lpha}} \end{aligned}$$

• $P_{\alpha}: L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded for $1 \leq p$. $P_{\alpha}f(x) = \int_{\mathbb{B}} f(y)R_{\alpha}(x,y)(1-|y|^{2})^{\alpha}dy.$

Kiyoki Tanaka (Osaka City University)

PH 2014 17 / 37

Let $\alpha > 0$. Then,

• $b^{p}(\mathbb{B}) \subset b^{p}_{\alpha}(\mathbb{B}).$

• For $x, y \in \mathbb{B}$,

$$egin{aligned} \mathcal{R}_lpha(x,x) &pprox rac{1}{(1-|x|)^{n+lpha}}\ \mathcal{R}_lpha(x,y) \lesssim rac{1}{|x-y|^{n+lpha}} \end{aligned}$$

• $P_{\alpha}: L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded for $1 \leq p$. $P_{\alpha}f(x) = \int_{\mathbb{B}} f(y)R_{\alpha}(x,y)(1-|y|^{2})^{\alpha}dy.$

Kiyoki Tanaka (Osaka City University)

Let $\alpha > 0$. Then,

- $b^{p}(\mathbb{B}) \subset b^{p}_{\alpha}(\mathbb{B}).$
- For $x, y \in \mathbb{B}$,

$$egin{aligned} &R_lpha(x,x)pproxrac{1}{(1-|x|)^{n+lpha}}\ &R_lpha(x,y)\lesssimrac{1}{|x-y|^{n+lpha}} \end{aligned}$$

• $P_{\alpha}: L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded for $1 \leq p$. $P_{\alpha}f(x) = \int_{\mathbb{B}} f(y)R_{\alpha}(x,y)(1-|y|^{2})^{\alpha}dy.$

🗇 🕨 🖌 ヨ ト イ ヨ

Let $\alpha > 0$. Then,

- $b^{p}(\mathbb{B}) \subset b^{p}_{\alpha}(\mathbb{B}).$
- For $x, y \in \mathbb{B}$,

$$egin{aligned} &\mathcal{R}_lpha(x,x)pproxrac{1}{(1-|x|)^{n+lpha}}\ &\mathcal{R}_lpha(x,y)\lesssimrac{1}{|x-y|^{n+lpha}} \end{aligned}$$

•
$$P_{\alpha}: L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$$
 is bounded for $1 \leq p$.
 $P_{\alpha}f(x) = \int_{\mathbb{B}} f(y)R_{\alpha}(x,y)(1-|y|^{2})^{\alpha}dy.$

Definition (averaging function, Berezin transform)

For any $0 < \delta < 1$,

$$\hat{arphi}_{\delta}(x) := rac{\int_{E_{\delta}(x)} arphi(y) dy}{V(E_{\delta}(x))}$$
: averaging function

$$ilde{arphi}(x) := rac{\int_{\mathbb{B}} |R(x,y)|^2 arphi(y) dy}{R(x,x)}$$
 : Berezin transform

for any $x \in \mathbb{B}$, where $E_{\delta}(x) := \{y \in \mathbb{B} : |x - y| < \delta(1 - |x|)\}.$

We can describe the boundedness of Toeplitz operator T_{φ} by using the above associate functions.

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_{φ} is bounded;
- averaging function φ̂ is bounded function;
- Berezin transform φ̃ is bounded function.

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_{φ} is compact;
- averaging function $\hat{\varphi}(x) \rightarrow 0$ as $|x| \rightarrow 1$;
- Berezin transform $\tilde{\varphi}(x) \rightarrow 0$ as $|x| \rightarrow 1$.

< □ > < □ > < □ > < □ >

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_{φ} is bounded;
- averaging function φ̂ is bounded function;
- Berezin transform $\tilde{\varphi}$ is bounded function.

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_{φ} is compact;
- averaging function $\hat{\varphi}(x) \rightarrow 0$ as $|x| \rightarrow 1$;
- Berezin transform $\tilde{\varphi}(x) \rightarrow 0$ as $|x| \rightarrow 1$.

< ロ > < 同 > < 回 > < 回 >

We consider Ω is smooth bounded domain in \mathbb{R}^n . We have the following theorem.

Theorem (Kang-Koo 2002)

Let Ω be a smooth bounded domain and α and β be multi-indices. Then, there exist $C_{\alpha,\beta} > 0$ and C > 0 such that for any $x, y \in \Omega$

$$|D_x^{lpha}D_y^{eta}R(x,y)|\leq rac{C_{lpha,eta}}{d(x,y)^{n+|lpha|+|eta|}}$$

and

$$R(x,x) \geq \frac{C}{r(x)^n}$$

where d(x, y) := r(x) + r(y) + |x - y| and r(x) is the distance between x and boundary of Ω .

- 3 >

 $1 \leq \rho < \infty, f \in b^{\rho}(\Omega)$ has the reproducing property, that is

$$f(x) = \int_{\Omega} R(x, y) f(y) dy$$

$${\sf P} f(x) := \int_{\Omega} {\sf R}(x,y) f(y) dy \quad f \in L^p(\Omega)$$

harmonic Bergman projection

1 : bounded linear operator.**Remark**Unfortunately, we don't have the estimate for the weighted harmonic Bergman kernel.

< 回 > < 三 > < 三 >

 $1 \leq \rho < \infty, f \in b^{\rho}(\Omega)$ has the reproducing property, that is

$$f(x) = \int_{\Omega} R(x, y) f(y) dy$$

$$Pf(x) := \int_{\Omega} R(x, y) f(y) dy \quad f \in L^p(\Omega)$$

harmonic Bergman projection

1 : bounded linear operator.**Remark**Unfortunately, we don't have the estimate for the weighted harmonic Bergman kernel. We introduce the decomposition of domain Ω .

Lemma (covering lemma)

Let $0 < \delta < \frac{1}{4}$. We can choose N (independ of δ), $\{\lambda_i\} \subset \Omega$ and disjoint covering $\{E_i\}$ for Ω .

- E_i is measurable set for any $i \in \mathbb{N}$;
- 2 $E_i \subset B(\lambda_i, \delta r(\lambda_i))$ for any $i \in \mathbb{N}$;

3 $\{B(\lambda_i, 3\delta r(\lambda_i))\}$ is uniformly finite intersection with bound N

where r(x) denotes the distance between x and $\partial \Omega$.

This contraction is similar to Whitney decomposition.

Theorem (T. 2012)

Let $1 , <math>\Omega$ be a bounded smooth domain. There exists $0 < \delta_0$ such that if $\{\lambda_i\}$ satisfies covering lemma for $\delta < \delta_0$, then $A_{p,\{\lambda_i\}} : \ell^p \to b^p$ is a bounded onto map, where the operator $A_{p,\{\lambda_i\}}$ is defined by

$$A_{p,\{\lambda_i\}}\{a_i\}(x) := \sum_{i=1}^{\infty} a_i R(x,\lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n},$$

where r(x) denotes the distance between x and $\partial \Omega$.

Remark. $\|R(x,\cdot)\|_{b^p} \lesssim r(\lambda_i)^{(1-\frac{1}{p})n}$. $R(x,\lambda_i)r(\lambda_i)^{(1-\frac{1}{p})n}$ plays role of the "basis".

Interpolating of harmonic Bergman functions

Let denote $V: b^p(\Omega) \rightarrow I^p$ by

$$V_{p,\{\lambda_i\}}f:=\{r(\lambda_i)^{\frac{n}{p}}f(\lambda_i)\}.$$

It is known that $A^*_{p,\{\lambda_i\}} = V_{q,\{\lambda_i\}}$ for 1 , <math>q: $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem (T. 2013)

Let $1 . We can choose a positive constant <math>\rho_0$ satisfying the following condition; if $\{\lambda_i\}_i \subset \Omega$ satisfy quasi-hyperbolic distance $\rho(\lambda_i, \lambda_j) > \rho_0$ for $i \neq j$, then $V : b^p(\Omega) \to l^p$ is bounded and onto.

$$\rho(x,y) := \inf_{\gamma \in \Gamma_{x,y}} \int_{\gamma} \frac{1}{r(z)} ds(z)$$

イロト イポト イヨト イヨ

Interpolating of harmonic Bergman functions

Let denote $V: b^p(\Omega) \to I^p$ by

$$V_{p,\{\lambda_i\}}f:=\{r(\lambda_i)^{\frac{n}{p}}f(\lambda_i)\}.$$

It is known that $A^*_{p,\{\lambda_i\}} = V_{q,\{\lambda_i\}}$ for $1 , <math>q: \frac{1}{p} + \frac{1}{q} = 1$.

Theorem (T. 2013)

Let $1 . We can choose a positive constant <math>\rho_0$ satisfying the following condition;

if $\{\lambda_i\}_i \subset \Omega$ satisfy quasi-hyperbolic distance $\rho(\lambda_i, \lambda_j) > \rho_0$ for $i \neq j$, then $V : b^{\rho}(\Omega) \to l^{\rho}$ is bounded and onto.

$$\rho(x, y) := \inf_{\gamma \in \Gamma_{x, y}} \int_{\gamma} \frac{1}{r(z)} ds(z)$$

We define the operators $U_{p,\{\lambda_i\}}: b^p \to \ell^p$ and $S_{p,\{\lambda_i\}}: b^p \to b^p$ as following;

$$S_{p,\{\lambda_i\}}f(x) := \sum_{i=1}^{\infty} R(x,\lambda_i)f(\lambda_i)|E_i|$$

$$U_{p,\{\lambda_i\}}(f) := \{|E_i|f(\lambda_i)r(\lambda_i)^{-(1-\frac{1}{p})n}\}_i$$

where $\{E_i\}_i$ is the disjoint covering of Ω such that $\lambda_i \in E_i$ for any $i \in \mathbb{N}$. Because $S = A \circ U$, by calculating ||S - Id||, we can give the condition that *S* is bijective.

・ロト ・ 同ト ・ ヨト ・ ヨ

Fix a defining function η for Ω s.t. $|\nabla \eta|^2 = 1 + \eta \omega$ for some $\omega \in C^{\infty}(\overline{\Omega})$. We denote the differential operator K_1 by

$$K_1g := g - rac{1}{2}\Delta(\eta^2 g)$$

 $R_1(x,y) := K_1(R_x)(y)$: modified harmonic Bergman kernel, where $R_x(\cdot) := R(x, \cdot)$

$$P_1f(x) := \int_{\Omega} R_1(x, y)f(y)dy$$
 modified projection.

Kiyoki Tanaka (Osaka City University)

Theorem (Choe-Koo-Yi 2004)

- $P_1 f = f$ for any $f \in b^1(\Omega)$.
- $P_1: L^p(\Omega) \to b^p(\Omega)$ is bounded for any $1 \le p < \infty$.
- For any multi-index α , there exists $C_{\alpha} > 0$ such that

$$egin{aligned} |D^lpha_x R_1(x,y)| &\leq rac{C_lpha r(y)}{d(x,y)^{n+1+|lpha}} \ |D^lpha_y R_1(x,y)| &\leq rac{C_lpha}{d(x,y)^{n+1}} \end{aligned}$$

Kiyoki Tanaka (Osaka City University)

∃ >

properties	Bergman kernel	modified kernel
symmetric	symmetric	non-symmetric
reproducing property	exist for $p \ge 1$	exist for $p \ge 1$
lower bdd	exist	not exist
upper bdd	$\frac{1}{d(x,y)^n}$	$\frac{r(y)}{d(x,y)^{n+1}}$
projection	bdd for $p > 1$	bdd for $p \ge 1$

イロト イポト イヨト イヨ

Theorem (T. 2013)

Let $1 \le p < \infty$ and Ω be a smooth bounded domain. Then, we can choose a sequence $\{\lambda_i\}$ in Ω such that $A_1 : \ell^p \to b^p$ is a bounded onto map, where the operator A_1 is defined by

$$A_1\{a_i\}(x) := \sum_{i=1}^{\infty} a_i R_1(x,\lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n},$$

Kiyoki Tanaka (Osaka City University)

$$egin{aligned} \mathcal{B} &:= \{f: \Omega o \mathbb{R}: ext{ harmonic, } \|f\|_\mathcal{B} < \infty \} \ \|f\|_\mathcal{B} &:= \sup\{r(x)|
abla f(x)|: x \in \Omega \} \ (b^1)^* \cong \mathcal{B} \end{aligned}$$

For fix $x_0 \in \Omega$,

$$\mathcal{B}_0 := \{f \in \mathcal{B} : f(x_0) = 0\}$$

Kiyoki Tanaka (Osaka City University)

・ロト ・ 日 ト ・ 目 ト ・

Theorem (T. 2013)

 Ω be a smooth bounded domain. Then, we can choose a sequence $\{\lambda_i\}$ in Ω such that $A_{\infty} : \ell^{\infty} \to \mathcal{B}_0$ is a bounded onto map, where the operator A_{∞} is defined by

$$f(x) = \sum_{j=1}^{\infty} a_j \tilde{R}_1(x, \lambda_j) r(\lambda_j)^n,$$

where $\tilde{R}_1(x, y) = R_1(x, y) - R_1(0, y)$.

・ロト ・ 同ト ・ ヨト ・ ヨ

Definition (Toeplitz operator)

 ${\cal T}_\mu$ on b^2 the Toeplitz operator with symbol μ

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

Problem.

What condition is the Toeplitz operator T_{μ} **good** (bounded, compact and of Schatten σ -class S^{σ} etc) ?

• • • • • • • • • • • • • •
Definition (Toeplitz operator)

 ${\cal T}_\mu$ on b^2 the Toeplitz operator with symbol μ

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

Problem.

What condition is the Toeplitz operator T_{μ} **good** (bounded, compact and of Schatten σ -class S^{σ} etc) ?

- A 🖻 🕨

We define the averaging function and Berezin transform on Ω which are similar to the unit ball case

Definition (averaging function, Berezin transform)

For any $0 < \delta < 1$ and 1 ,

$$\hat{\mu}_{\delta}(x) := rac{|\mu(E_{\delta}(x))|}{V(E_{\delta}(x))}$$
: averaging function

$$ilde{\mu}_{
ho}(x) := rac{\int_{\Omega} |R(x,y)|^{
ho} d\mu(y)}{\int_{\Omega} |R(x,y)|^{
ho} dy}$$
 : Berezin transform

for any $x \in \Omega$.

The preceding result for Toeplitz operator

Theorem (Choe-Lee-Na 2004)

Let $1 \le \sigma < \infty$ and $0 < \delta < 1$. For $\mu \ge 0$, the following conditions are equivalent;

- $T_{\mu}\in \mathcal{S}_{\sigma}$,
- $ilde{\mu}_2 \in L^{\sigma}(dV_R)$,
- $\hat{\mu}_{\delta} \in L^{\sigma}(dV_R)$,
- $\sum_{j} \hat{\mu}_{\delta}(\lambda_{j})^{\sigma} < \infty.$

for some $\{\lambda_j\}$ satisfied with covering lemma, where $dV_R = R(x, x)dx$.

c.f.

For T : compact operator on Hilbert space \mathcal{H} , 0 < σ < ∞

T belongs to σ -Schatten class $S_{\sigma} \Leftrightarrow \sum_{m=1}^{\infty} s_m(T)^{\sigma} < \infty$

where $\{s_m(T)\}_m$ is singular value sequence of T.

Theorem (T. 2013)

Let $\sigma > \frac{2(n-1)}{n+2}$ and $\mu \ge 0$. Choose a constant $\delta > 0$ and a sequence $\{\lambda_j\}$ satisfying the conditions obtained by covering lemma. If $\sum_{j=1}^{\infty} \hat{\mu}_{\delta}(\lambda_j)^{\sigma} < \infty$, then $T_{\mu} \in S_{\sigma}$.

イロト イ押ト イヨト イヨト

By the standard operator theory, $X \in S^{\sigma}$ and Y is bdd operator $\Rightarrow XY, YX \in S^{\sigma}$.

- First, we check the condition A^{*}T_µA ∈ S^σ(ℓ²) (by using assumption).
- $T_{\mu} = (US^{-1})^* A^* T_{\mu} A (US^{-1})$ belongs to S^{σ} . \Box

$$egin{array}{ccc} b^2(\Omega) & \stackrel{T_\mu}{\longrightarrow} & b^2(\Omega) \ (US^{-1})^* igg \downarrow & & igg 1 & US^{-1} \ \ell^2 & \stackrel{A^*T_\mu A}{\longrightarrow} & \ell^2 \end{array}$$

A (10) F (10)

By the standard operator theory,

 $X \in S^{\sigma}$ and Y is bdd operator $\Rightarrow XY, YX \in S^{\sigma}$.

First, we check the condition A^{*}T_μA ∈ S^σ(ℓ²) (by using assumption).

• $T_{\mu} = (US^{-1})^* A^* T_{\mu} A (US^{-1})$ belongs to S^{σ} .

$$egin{array}{ccc} b^2(\Omega) & \stackrel{T_\mu}{\longrightarrow} & b^2(\Omega) \ (US^{-1})^* igg| & & igg(US^{-1})^* igg| \ \ell^2 & \stackrel{A^*T_\mu A}{\longrightarrow} & \ell^2 \end{array}$$

A (1) > A (2) > A

By the standard operator theory,

 $X \in S^{\sigma}$ and Y is bdd operator $\Rightarrow XY, YX \in S^{\sigma}$.

First, we check the condition A^{*}T_μA ∈ S^σ(ℓ²) (by using assumption).

•
$$T_{\mu} = (US^{-1})^* A^* T_{\mu} A (US^{-1})$$
 belongs to S^{σ} . \Box
 $b^2(\Omega) \xrightarrow{T_{\mu}} b^2(\Omega)$
 $(US^{-1})^* \downarrow \qquad \uparrow US^{-1}$
 $\ell^2 \xrightarrow{A^* T_{\mu} A} \ell^2$

A (1) > A (1) > A

[1] B. R. Choe, H. Koo and H. Yi, Projections for harmonic Bergman spaces and applications, J. Funct. Anal., 216 (2004), 388-421. [2] R.R. Coifman and R. Rochberg, Representation Theorems for Holomorphic and Harmonic functions in L^p, Astérisque **77** (1980), 11–66. [3] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Inv. Math. 26 (1974), 1-65. [4] H. Kang and H. Koo, Estimates of the harmonic Bergman kernel on smooth domains, J. Funct. Anal., 185 (2001), 220-239. [5] K. Stroethoff, Compact Toeplitz operators on weighted harmonic Bergman spaces. J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 136–148. [6] K. Tanaka, Atomic decomposition of harmonic Bergman functions, Hiroshima Math. J., 42 (2012), 143-160. [7] K. Tanaka, Representation theorem for harmonic Bergman and Bloch

functions, to appear in Osaka J. Math..

・ロト ・ 四ト ・ ヨト ・ ヨト …