# A representation for harmonic Bergman functions and its applications

### Kiyoki Tanaka

Department of Mathematics Osaka City University

2012. July 23-27 / Pusan National University

・ロト ・四ト ・ヨト ・ヨト









Kiyoki Tanaka representation and application

・ロン ・ 同 と ・ ヨ と ・ ヨ と

3

# Harmonic Bergman Space b<sup>p</sup>

Let  $1 \le p < \infty$  and  $\Omega \subset \mathbb{R}^n$  is smooth bounded domain.  $b^p(\Omega) := \{f : \text{ harmonic in } \Omega \text{ and } ||f||_p < \infty\}$  $b^p$  is called harmonic Bergman space.

- $b^{p}(\Omega) \subset L^{p}(\Omega)$ : closed subspace
- For any x ∈ Ω, f ∈ b<sup>p</sup>(Ω) has the following representation;

$$f(\boldsymbol{x}) = \int_{\Omega} R(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d\boldsymbol{y}$$

 $R(\cdot, \cdot)$  is called harmonic Bergman kernel.

・ロン ・四 と ・ ヨ と ・ ヨ と …

# Example of the harmonic Bergman kernel

The case  $\Omega = \mathbb{B}$  (unit ball)

$$R_B(x,y) = \frac{(n-4)|x|^4|y|^4 + (8x \cdot y - 2n - 4)|x|^2|y|^2 + n}{nV(B)(1 - 2x \cdot y + |x|^2|y|^2)^{1 + \frac{n}{2}}}$$

$$=\frac{(n-4)|x|^4|y|^4+(8x\cdot y-2n-4)|x|^2|y|^2+n}{nV(B)((1-|x|^2)(1-|y|^2)+|x-y|^2)^{1+\frac{n}{2}}}$$

ヘロト ヘアト ヘビト ヘビト

ъ

# The recently result

### Theorem (H. Kang and H. Koo 2002)

Let  $\Omega$  be a smooth bounded domain and  $\alpha$  and  $\beta$  be multi-indices. Then, there exist  $C_{\alpha,\beta>0}$  and C > 0 such that for any  $x, y \in \Omega$ 

$$egin{aligned} |D_x^lpha D_y^eta R(x,y)| &\leq rac{C_{lpha,eta}}{d(x,y)^{n+|lpha|+|eta|}}\ R(x,x) &\geq rac{C}{r(x)^n} \end{aligned}$$

where d(x, y) := r(x) + r(y) + |x - y| and r(x) is the distance between x and boundary  $\Omega$ .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

э

## Harmonic Bergman projection

### We denote the harmonic Bergman projection by

$$Pf(x) := \int_{\Omega} R(x, y) f(y) dy \quad f \in L^p(\Omega)$$

If  $1 , then <math>P : L^{p}(\Omega) \to b^{p}(\Omega)$  is bounded linear operator.

イロン 不得 とくほ とくほ とう

1

### Representation theorem

### Theorem (K. Tanaka (to appear in Hiroshima Journal))

Let  $1 and <math>\Omega$  be a smooth bounded domain. Then, we can choose  $\{\lambda_i\} \subset \Omega$  such that for any  $f \in b^p(\Omega)$ there exists  $\{a_i\} \in \ell^p$  such that

$$f(\mathbf{x}) = \sum_{i=1}^{\infty} \mathbf{a}_i \mathbf{R}(\mathbf{x}, \lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n}$$

where the convergence of series is  $b^{\rho}$ -convergence.

ヘロト ヘアト ヘビト ヘビト

# Modified harmonic Bergman kernel

We choose a defining function  $\eta$  for  $\Omega$  such that  $|\nabla \eta|^2 = 1 + \eta \omega$  for some  $\omega \in C^{\infty}(\overline{\Omega})$ . We denote the differential operator  $K_1$  by

$$\mathcal{K}_1g := g - rac{1}{2}\Delta(\eta^2 g),$$

and we denote the following kernel and projection;

 $R_1(x, y) := K_1(R_x)(y)$  : modified harmonic Bergman kernel,  $P_1f(x) := \int_{\Omega} R_1(x, y)f(y)dy$  modified projection.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

# Some property

### Theorem (B. R. Choe, H. Koo and H. Yi 2004)

• 
$$P_1 f = f$$
 for any  $f \in b^1(\Omega)$ .

- $P_1: L^p(\Omega) \to b^p(\Omega)$  is bounded for any  $1 \le p < \infty$ .
- For any multi-index  $\alpha$ , there exists  $C_{\alpha} > 0$  such that

$$egin{aligned} D_x^lpha \mathcal{R}_1(x,y) &| \leq rac{C_lpha r(y)}{d(x,y)^{n+1+|lpha|}} \ &| D_y^lpha \mathcal{R}_1(x,y) &| \leq rac{C_lpha}{d(x,y)^{n+1}} \end{aligned}$$

◆ロト ◆聞 と ◆臣 と ◆臣 と 三臣 二

## Result 1

### Theorem ( K. Tanaka (to appear in Osaka Journal))

Let  $1 \le p < \infty$  and  $\Omega$  be a smooth bounded domain. Then, we can choose  $\{\lambda_i\} \subset \Omega$  such that for any  $f \in b^p(\Omega)$ there exist  $\{a_i\} \in \ell^p$ 

$$F(\mathbf{x}) = \sum_{i=1}^{\infty} a_i R_1(\mathbf{x}, \lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n}$$

where the series convergence is  $b^{p}$ -convergence.

ヘロト ヘアト ヘビト ヘビト

# Outline of the proof

### Definition (uniformly finite intersection)

A set family  $\{U_i\}$  is called uniformly finite intersection with bound *N*, if there exists *N* such that  $\#\{i \in \mathbb{N}; x \in U_i\} \le N$ , for any  $x \in \Omega$ .

### Lemma (covering lemma)

Let  $0 < \delta < \frac{1}{4}$ . We can choose N (independ of  $\delta$ ),

- $\{\lambda_i\} \subset \Omega$  and disjoint covering  $\{E_i\}$  for  $\Omega$ .
  - $E_i$  is measurable set for any  $i \in \mathbb{N}$ ;
  - $E_i \subset B(\lambda_i, \delta r(\lambda_i))$  for any  $i \in \mathbb{N}$ ;
  - {B(λ<sub>i</sub>, 3δr(λ<sub>i</sub>))} is uniformly finite intersection with bound N

### Outline of the proof

#### Lemma (bounded test lemma)

$$I_s f(x) := \int_{\Omega} \frac{r(y)^s}{d(x, y)^{n+s}} f(y) dy$$

If s = 0, then  $I_s : L^p \to L^p$  is bounded for p > 1. If s > 0, then  $I_s : L^p \to L^p$  is bounded for  $p \ge 1$ .

イロト イポト イヨト イヨト 一日

# Outline of the proof

We put  $0 < \delta < \frac{1}{4}$  (fixed later),  $\{\lambda_i\} \subset \Omega$  and  $\{E_i\}$  satisfying covering lemma. We consider the following operators;

$$oldsymbol{A}_{p,\{\lambda_i\}}(\{oldsymbol{a}_i\})(oldsymbol{x}):=\sum_{i=1}^\infty oldsymbol{a}_i oldsymbol{R}(oldsymbol{x},\lambda_i)r(\lambda_i)^{(1-rac{1}{p})n} ext{ in } oldsymbol{b}^p$$

$$S_{p,\{\lambda_i\}}f(x) := \sum_{i=1}^{\infty} R(x,\lambda_i)f(\lambda_i)|E_i|$$
 in  $b^p$ 

$$U_{p,\{\lambda_i\}}(f) := \{|\boldsymbol{E}_i|f(\lambda_i)r(\lambda_i)^{-(1-\frac{1}{p})n}\}_i$$

Find a condition that  $A_{\rho,\{\lambda_i\}}: \ell^p \to b^p(\Omega)$  is onto!

## Outline of the proof

We check the following properties.

• 
$$A_{p,\{\lambda_i\}} \circ U_{p,\{\lambda_i\}} = S_{p,\{\lambda_i\}}$$

•  $S_{p,\{\lambda_i\}}: b^p \to b^p$ ,  $U_{p,\{\lambda_i\}}: b^p \to \ell^p$ ,  $A_{p,\{\lambda_i\}}: \ell^p \to b^p$  are bounded operators.

• For enough small  $\delta > 0$ ,  $\|S_{p,\{\lambda_i\}} - id\| < 1$ .

Hence  $S_{p,\{\lambda_i\}}: b^p \to b^p$  is bijective.

ヘロト 人間 とくほとく ほとう

э.

# Definition and problem for Toeplitz operator

We consider the positive Toeplitz operator on  $b^2$ .

Definition (Toeplitz operator)

We call the operator  $\mathcal{T}_{\mu}$  on  $b^2$  the Toeplitz operator with symbol  $\mu$ , if

$$\mathcal{T}_{\mu} := \int_{\Omega} \mathcal{R}(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mu(\mathbf{y}).$$

### Problem.

Describe conditions that the Toeplitz operator  $T_{\mu}$  is **good** operator (for example bonded or compact).

ヘロト ヘアト ヘビト ヘビト

### Definition of associate functions

### Definition (averaging function, Berezin transform)

For any  $0 < \delta < 1$  and 1 , we define

$$\hat{\mu}_{\delta}(\mathbf{x}) := rac{|\mu(\mathcal{E}_{\delta}(\mathbf{x}))|}{\mathcal{V}(\mathcal{E}_{\delta}(\mathbf{x}))}$$

and

$$ilde{\mu}_{
ho}(\mathbf{x}) := rac{\int_{\Omega} |R(\mathbf{x}, \mathbf{y})|^{
ho} d\mu(\mathbf{y})}{\int_{\Omega} |R(\mathbf{x}, \mathbf{y})|^{
ho} d\mathbf{y}}$$

for any  $x \in \Omega$ .

ヘロト 人間 とくほとくほとう

ъ

# The preceding result for Toeplitz operator

### Theorem (B. R. Choe, Y. J. Lee and K. Na 2004)

Let  $1 \le \sigma < \infty$  and  $0 < \delta < 1$ . For  $\mu \ge 0$ , the following conditions are equivalent;

$$\ \, \bullet \ \, \mathsf{T}_{\mu} \in \mathsf{S}_{\sigma},$$

2) 
$$ilde{\mu}_2 \in L^\sigma(\lambda)$$
,

$$\ \, \widehat{\mu}_{\delta} \in L^{\sigma}(\lambda),$$

for some  $\{\lambda_j\}$  satisfied with covering lemma.

・ロト ・同ト ・ヨト ・ヨト

### Result 2

### Theorem (K. Tanaka (to appear in Osaka Journal))

Let  $\sigma > \frac{2(n-1)}{n+2}$  and  $\mu \ge 0$ . Choose a constant  $\delta > 0$  and a sequence  $\{\lambda_j\}$  satisfying the conditions obtained by covering lemma. If  $\sum_{j=1}^{\infty} \hat{\mu}_{\delta}(\lambda_j)^{\sigma} < \infty$ , then  $T_{\mu} \in S_{\sigma}$ .

イロト イポト イヨト イヨト 三日