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e harmonic Bergman space on the unit ball

e harmonic Bergman space on smooth bounded domain
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Bergman space on the unit disc

In 1922, S. Bergman suggested the following space (Bergman space):

[2(D, dA) := {f : D — C : f : analytic in D and ||f||z < oo
a

1
norm : |[f|» := (/D |f|2dA)2
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Bergman space on the unit disc

@ [2(D, dA) c L?(D, dA) : closed subspace
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Bergman space on the unit disc

@ [2(D, dA) c L?(D, dA) : closed subspace
@ L2(DD, dA) : reproducing kernel Hilbert space, i.e.,
Yz € D 3K(z,') € L3(D, dA) s.t. Vf € L2(DD)

f(z) = /DK(Z, w)f(w)dA(w) (reproducing property)
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Bergman space on the unit disc

@ [2(D, dA) c L?(D, dA) : closed subspace
@ L2(DD, dA) : reproducing kernel Hilbert space, i.e.,
Yz € D 3K(z,') € L3(D, dA) s.t. Vf € L2(DD)

f(z) = /DK(Z, w)f(w)dA(w) (reproducing property)

@ K(z,w) = K(w, z) : anti-symmetric

()
1

KW= a—zmp
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Generalization

[2(D,dA) := {f : D — C: f: analytic in D and ||f||» < oo},
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Generalization

[2(D,dA) := {f : D — C: f: analytic in D and ||f||» < oo},

@ exponent 2 — p.

@ measure A (norm | - |2 ) — weighted measure.
@ analytic — solutions of differential equation.

@ domain D — "general" domain.
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harmonic Bergman space

1 <p<oo,QcCR™: domain.
bP(Q2) := {f : @ — R harmonic and ||f||, < oo} : harmonic Bergman
space
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harmonic Bergman space

1 <p<oo,QcCR™: domain.
bP(Q2) := {f : @ — R harmonic and ||f||, < oo} : harmonic Bergman
space

@ bP(Q) C LP(Q): closed subspace
@ In particular, b?(Q) c L?(Q): reproducing kernel Hilbert space

e f € b?(Q) has a reproducing property: for x € Q, there exists
unique R(x,-) € b?(Q)

F(x) = /Q R(x. y)H(y)dy.
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harmonic Bergman space

1 <p<oo,QcCR™: domain.
bP(Q2) := {f : @ — R harmonic and ||f||, < oo} : harmonic Bergman
space

@ bP(Q) C LP(Q): closed subspace
@ In particular, b?(Q) c L?(Q): reproducing kernel Hilbert space

e f € b?(Q) has a reproducing property: for x € Q, there exists
unique R(x,-) € b?(Q)

F(x) = /Q R(x. y)H(y)dy.

R(-,-) : harmonic Bergman kernel.
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properties for harmonic Bergman kernel
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properties for harmonic Bergman kernel

@ R(x,y) has real value.
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properties for harmonic Bergman kernel

@ R(x,y) has real value.
@ symmetric R(x,y) = R(y, x).
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properties for harmonic Bergman kernel

@ R(x,y) has real value.

@ symmetric R(x,y) = R(y, x).

° [[R(x;-)llpe = R(x, x).

@ If {em(-)}men is orthogonal basis of b?(Q), then

R(x,y) = Z em(x)em(y)
m=1

for x,y € Q.
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Projection, Toeplitz operator

We consider the orthogonal projection P from L2(Q) to b?(R).
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Projection, Toeplitz operator

We consider the orthogonal projection P from L2(Q) to b?(R).
It is well-known that for f € L?(Q), P has the form
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Projection, Toeplitz operator

We consider the orthogonal projection P from L2(Q) to b?(R).
It is well-known that for f € L?(Q), P has the form

Pf(x) = /Q R(x. y)H(y)dy.

For a function ¢, we denote Toeplitz operator 7, on b?(Q) by

Tof(x) == P(f)(X) = /Q R(x.y){(y)e(y)dy
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Projection, Toeplitz operator

We consider the orthogonal projection P from L2(Q) to b?(R).
It is well-known that for f € L?(Q), P has the form

Pf(x) = /Q R(x. y)H(y)dy.

For a function ¢, we denote Toeplitz operator 7, on b?(Q) by

Tof(x) == P(f)(X) = /Q R(x.y){(y)e(y)dy

For a measure 1, we denote Toeplitz operator 7, on b?(Q) by

TLH(x) = /Q R(x. y)H(y)dp(y).
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harmonic Bergman kernel of unit ball

When Q = B (unit ball),

(n—4)Ix*ly|* + (8x -y —2n—4)|x[*|y? + n

0 = B = )P = Iy P) + x — )3

and
(n—4)|x|* +2n|x|?> +n

0 = B ey
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harmonic Bergman space on the unit ball

When Q =B : unit ball, b°(B) Cc b9(B) (1 < g < p < ).
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harmonic Bergman space on the unit ball
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harmonic Bergman space on the unit ball

When Q =B : unit ball, b°(B) Cc b9(B) (1 < g < p < ).
bP(B)* ~ bI(B) (1 <p<oo, 1 +1=1)
f € bP(B) (1 < p < c0) has the reproducing property

f(x) = /R R(x.y)(y)dy.

Harmonic Bergman projection P is extended from LP(B) — bP(B)
(1 <p<oo)and P: LP(B) — b°(B) is bounded.
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Weighted harmonic Bergman space

For a > —1, we consider the weighted harmonic Bergman space
bh(B) denoted by

bP(B) := {f : harmonic on B and |||, < oo}

where ;

1l = ( / rf(x)rpdva(x))"
and dV,(x) = (1 — |x|?)~dx.
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Weighted kernel, projection

By same method, f € b?(B) has a reproducing property: for x € B,
there exists unique R.(x,-) € b2(B)

f(x) = /B Ra (%, Y)f(y)dVa ().
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Weighted kernel, projection

By same method, f € b?(B) has a reproducing property: for x € B,
there exists unique R.(x,-) € b2(B)
10 = [ Rulxn) () aVay).

Orthogonal projection P, form L2(B, dV,,) to b2(B) has the form

P.f(x) = /B Ra (X, Y)F(Y)dVa ).
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Weighted kernel, projection

By same method, f € b?(B) has a reproducing property: for x € B,
there exists unique R.(x,-) € b2(B)

10 = [ Rulxn) () aVay).
Orthogonal projection P, form L2(B, dV,,) to b2(B) has the form
Pf() = [ RulxN)HY)AVa(),

P, is extended from LP(B, dV,,) — bA(B) (1 < p < o) and
P, : LP(B,dV,) — bR(B) is bounded.
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Properties for weighted harmonic Bergman kernel

Let o > 0. Then,
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Properties for weighted harmonic Bergman kernel

Let o > 0. Then,
@ bP(B) C bZ(IB%).
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Properties for weighted harmonic Bergman kernel

Let o > 0. Then,
@ b°(B) C bA(B).
@ Forx,y €B,

’
Ra(x, x) ~ T —x)mo
Ra(X,y) S =

~x = y|rte
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Properties for weighted harmonic Bergman kernel

Let o > 0. Then,
@ b°(B) C bA(B).
@ Forx,y €B,

’
Ra(x, x) = = x)re
Rult,y) S o

~x =yl

@ P, : LP(B) — bP(B) is bounded for 1 < p.
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Properties for weighted harmonic Bergman kernel

Let o > 0. Then,
@ b°(B) C bA(B).
@ Forx,y €B,

’
Ra(x, x) = = x)re
Rult,y) S o

~x =yl

@ P, : LP(B) — bP(B) is bounded for 1 < p.
P.f(x) = /E F(y)Ra(x.y)(1 — |y[2)*y.
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Known results of Toeplitz operators on b?(B)

Definition (averaging function, Berezin transform)
Forany0 < 4§ <1,

. . fEé(X) o(y)dy
)= Y )

2
) = I8 IR(); (};),!Xs)o(y)dy

forany x € B, where Es(x) :={y € B: |x — y| < (1 — |x])}.

: averaging function

: Berezin transform

v

We can describe the boundedness of Toeplitz operator T, by using the
above associate functions.
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Known results of Toeplitz operators on b?(BB)

Let p be a positive function on B. Then, the following conditions are
equivalent:

@ T, is bounded;

@ averaging function ¢ is bounded function;
@ Berezin transform ¢ is bounded function.
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Known results of Toeplitz operators on b?(B)

Let p be a positive function on B. Then, the following conditions are
equivalent:

@ T, is bounded;
@ averaging function ¢ is bounded function;

@ Berezin transform ¢ is bounded function.

Theorem

Let p be a positive function on B. Then, the following conditions are
equivalent:

@ T, is compact;
@ averaging function $(x) — 0 as |x| — 1;
@ Berezin transform $(x) — 0 as |x| — 1.

v
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The preceding result

We consider Q is smooth bounded domain in R". We have the
following theorem.
Theorem (Kang-Koo 2002)

Let Q be a smooth bounded domain and «. and 3 be multi-indices.
Then, there exist C, 3 > 0 and C > 0 such that for any x,y € Q

Cos

o b
DDy RO Y < Grnviera

and

R(x,x) > r(xC)"

where d(x,y) = r(x) + r(y) + |x — y| and r(x) is the distance between
x and boundary of Q.

v
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Harmonic Bergman projection

1 < p< oo, fe bP(Q) has the reproducing property, that is
00 = | Aty

Pf(x) ::/QR(x,y)f(y)dy felP(Q)

harmonic Bergman projection
1<p<oo= P:LP(Q)— bP(Q): bounded linear operator
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Preparation for results

Lemma (covering lemma)

Let0 < < }1. We can choose N (independ of 6), {\;} C Q and disjoint
covering {E;} for Q.

@ E; is measurable set for any i € N;

Q E; C B(\,dr(\)) foranyi € N;

Q {B(\;,30r();))} is uniformly finite intersection with bound N
where r(x) denotes the distance between x and o).
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Representation theorem

Theorem (T. 2012)

Let1 < p < o0, Q be a bounded smooth domain. There exists 0 < dg
such that if {\;} satisfies covering lemma for 6 < &y, then

Ap\y  IP — bPis a bounded onto map, where the operator A, (53 is
defined by

Aspplait(x Za, 06 A rO) ),

where r(x) denotes the distance between x and 02.
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Interpolating of harmonic Bergman functions

Let denote V : bP(Q2) — IP by

IS

va{Ai}f = {I’()\,) f()\,)}

Itis known that As = Vg yyfor1 <p<oo, g+ ¢ =1.
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Interpolating of harmonic Bergman functions

Let denote V : bP(Q2) — IP by

IS

va{Ai}f = {I’()\,) f()\,)}

Itis known that As = Vg yyfor1 <p<oo, g+ ¢ =1.

Theorem (T. 2013)

Let1 < p < co. We can choose a positive constant py satisfying the
following condition;

if{\i}; C Q satisfy quasi-hyperbolic distance p(\;, \;) > po for i # |,
then V : bP(Q2) — IP is bounded and onto.

plxy) = _inf / 0s(2)
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Outline of the proof of representation theorem

We define the operators Uy, () : b° — (P and S, : bP — bP as
following;

oo

Sp, ZRXA M)l Eif

Up iy () = {IEITO) ()07,

where {E;}; is the disjoint covering of Q such that \; € E; forany i € N.
Because S = Ao U, by calculating ||S — /d||, we can give the condition
that S is bijective.
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Modified harmonic Bergman kernel

Fix a defining function n for @ s.t.
|Vn|? =1 + nw for some w € C=(Q).
We denote the differential operator K; by

1
Kig:=g— *A(nzg)

Ri(x,y) = Ki(R)(¥)
where Ry(-) := R(x,-)

Py f(x) :_/QR1(x,y)f(y)dy modified projection.
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Some property

Theorem (Choe-Koo-Yi 2004)
@ Pif=fforanyfc b'(Q).
@ Py : LP(Q) — bP(RQ) is bounded for any 1 < p < cc.
@ For any multi-index «, there exists C, > 0 such that

o Car(y)
Dy Ri(x,y)| < dlx, y)reial

fe Ca
Dy Ri(x,¥)| < d0x,y)m
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Comparison between kernels

properties Bergman kernel | modified kernel
symmetric symmetric non-symmetric

reproducing property | exist for p > 1 exist for p > 1
lower bdd exist not exist
upper bdd d(x1,y)” d(xr,(yy))"+1
projection bdd for p > 1 bdd for p > 1
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Modified representation

Theorem (T. 2013)

Let1 < p < oo and Q2 be a smooth bounded domain. Then, we can
choose a sequence {\;} in Q such that Ay : /P — bP is a bounded onto
map, where the operator Ay is defined by

_1
Ar{ai}(x Zaﬂ(xA CHRN
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Harmonic Bloch space

B :={f:Q — R: harmonic, ||f||p < oo}
[lls = sup{r(x)|VF(x)| : x € 2}
(b') =B

For fix xp € Q,
Bo = {fEBZf(XQ):O}
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Representation for harmonic Bloch function

Theorem (T. 2013)

Q be a smooth bounded domain. Then, we can choose a sequence

{\i} in Q such that A, : (*° — By is a bounded onto map, where the
operator A, is defined by

() =D aiRi(x, \)r(y)",
=1

where Ri(x,y) = Ri(x,y) — Ri(0,y).
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Definition and problem for Toeplitz operator

Definition (Toeplitz operator)

T, on b? the Toeplitz operator with symbol

T, H(x) = /Q R(x, y)f(y)du(y).
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Definition and problem for Toeplitz operator

Definition (Toeplitz operator)
T, on b? the Toeplitz operator with symbol

T, H(x) = /Q R(x, y)f(y)du(y).

Problem.
What condition is the Toeplitz operator T, good ( bounded, compact
and of Schatten o-class S etc) ?
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Averaging function, Berezin transform

Definition (averaging function, Berezin transform)
Forany0O<éd<t1and1 < p< o,

o uEW)
As) = E ()

IRy PAu(y)
o) = R, )Py

for any x € Q.

: averaging function

: Berezin transform
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The preceding result for Toeplitz operator

Theorem (Choe-Lee-Na 2004)

Let1 <o <ocand0 < é < 1. Foru > 0, the following conditions are
equivalent;

e T,eS,,
® fip € L7(dVR),
® fi5 € L7(dVR),
® ¥, is(N)° < oo.
for some {\;} satisfied with covering lemma, where dVgr = R(x, x)dXx.

v

c.f.
T : compact operator on Hilbert space H, 0 < ooo

T belongs to o-Schatten class S, < Z Sm(T)? < o0
m=1
where {sm(T)}m is singular value sequence of T.
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Extension of the previous theorem

Theorem (T. 2013)

Leto > 2(,;’;21) and p > 0. Choose a constant > 0 and a sequence

{\;} satisfying the conditions obtained by covering lemma. If
> o1 fis(A)7 < oo, then T, € S,.
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Outline of the proof

By the standard operator theory,
X € §7 and Y is bdd operator = XY, YX € S°.
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o First, we can check the condition A*T,A € S7(¢2).
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Outline of the proof

By the standard operator theory,
X € §7 and Y is bdd operator = XY, YX € S°.

o First, we can check the condition A*T,A € S7(¢2).
® T,=(US")*A*T,A(US™") belongs to S°. OJ
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