Toeplitz operators on harmonic Bergman spaces

Kiyoki Tanaka

Osaka City University Advanced Mathematical Institute (OCAMI)

January, 12, 2014 / 56th Function theory symposium

Outline

- Introduction
- harmonic Bergman space on the unit ball
- narmonic Bergman space on smooth bounded domain
- Modified harmonic Bergman kernel
- 5 Application for Toeplitz operator

In 1922, S. Bergman suggested the following space (Bergman space):

$$L^2_a(\mathbb{D},\mathit{dA}) := \{f: \mathbb{D} o \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_2 < \infty \}$$

norm:
$$||f||_2 := \left(\int_{\mathbb{D}} |f|^2 dA\right)^{\frac{1}{2}}$$

- $L^2_a(\mathbb{D}, dA) \subset L^2(\mathbb{D}, dA)$: closed subspace
- $L_a^2(\mathbb{D}, dA)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \ \exists \overline{K(z, \cdot)} \in L_a^2(\mathbb{D}, dA) \ \text{s.t.} \ \forall f \in L_a^2(\mathbb{D})$

$$f(z) = \int_{\mathbb{D}} K(z, w) f(w) dA(w)$$
 (reproducing property)

• $K(z, w) = \overline{K(w, z)}$: anti-symmetric

$$K(z,w) = \frac{1}{\pi(1-z\bar{w})^2}$$

- $L^2_a(\mathbb{D}, dA) \subset L^2(\mathbb{D}, dA)$: closed subspace
- $L_a^2(\mathbb{D}, dA)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \ \exists \overline{K(z, \cdot)} \in L_a^2(\mathbb{D}, dA) \ \text{s.t.} \ \forall f \in L_a^2(\mathbb{D})$

$$f(z) = \int_{\mathbb{D}} K(z, w) f(w) dA(w)$$
 (reproducing property)

• $K(z, w) = \overline{K(w, z)}$: anti-symmetric

$$K(z,w) = \frac{1}{\pi(1-z\bar{w})^2}$$

- $L^2_a(\mathbb{D}, dA) \subset L^2(\mathbb{D}, dA)$: closed subspace
- $L_a^2(\mathbb{D}, dA)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \ \exists \overline{K(z, \cdot)} \in L_a^2(\mathbb{D}, dA) \ \text{s.t.} \ \forall f \in L_a^2(\mathbb{D})$

$$f(z) = \int_{\mathbb{D}} K(z, w) f(w) dA(w)$$
 (reproducing property)

• $K(z, w) = \overline{K(w, z)}$: anti-symmetric

$$K(z,w) = \frac{1}{\pi(1-z\bar{w})^2}$$

- $L^2_a(\mathbb{D}, dA) \subset L^2(\mathbb{D}, dA)$: closed subspace
- $L_a^2(\mathbb{D}, dA)$: reproducing kernel Hilbert space, i.e., $\forall z \in \mathbb{D} \ \exists \overline{K(z, \cdot)} \in L_a^2(\mathbb{D}, dA) \ \text{s.t.} \ \forall f \in L_a^2(\mathbb{D})$

$$f(z) = \int_{\mathbb{D}} K(z, w) f(w) dA(w)$$
 (reproducing property)

- $K(z, w) = \overline{K(w, z)}$: anti-symmetric
- •

$$K(z,w) = \frac{1}{\pi(1-z\bar{w})^2}$$

$$L^2_a(\mathbb{D},\textit{dA}) := \{f: \mathbb{D} \to \mathbb{C}: f: \text{analytic in } \mathbb{D} \text{ and } \|f\|_2 < \infty\},$$

- exponent $2 \rightarrow p$
- measure A (norm $\|\cdot\|_2$) \rightarrow weighted measure.
- ullet analytic o solutions of differential equation
- ullet domain $\mathbb{D} o$ "general" domain.

$$L^2_a(\mathbb{D}, dA) := \{f : \mathbb{D} \to \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_2 < \infty\},$$

- exponent $2 \rightarrow p$.
- measure A (norm $\|\cdot\|_2$) \rightarrow weighted measure.
- analytic → solutions of differential equation
- ullet domain $\mathbb{D} o$ "general" domain.

$$L^2_a(\mathbb{D}, dA) := \{f : \mathbb{D} \to \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_2 < \infty\},$$

- exponent 2 → p.
- measure A (norm $\|\cdot\|_2$) \rightarrow weighted measure.
- ullet analytic o solutions of differential equation
- ullet domain $\mathbb{D} o$ "general" domain.

$$L^2_a(\mathbb{D}, dA) := \{f : \mathbb{D} \to \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_2 < \infty\},$$

- exponent 2 → p.
- measure A (norm $\|\cdot\|_2$) \rightarrow weighted measure.
- ullet analytic o solutions of differential equation.
- domain $\mathbb{D} \to$ "general" domain.

$$L^2_a(\mathbb{D}, dA) := \{f : \mathbb{D} \to \mathbb{C} : f : \text{analytic in } \mathbb{D} \text{ and } \|f\|_2 < \infty\},$$

- exponent 2 → p.
- measure A (norm $\|\cdot\|_2$) \rightarrow weighted measure.
- ullet analytic o solutions of differential equation.
- domain $\mathbb{D} \to$ "general" domain.

 $1 \le p < \infty$, $\Omega \subset \mathbb{R}^n$: domain. $b^p(\Omega) := \{f : \Omega \to \mathbb{R} \text{ harmonic and } ||f||_p < \infty\}$: harmonic Bergman space

- $b^p(\Omega) \subset L^p(\Omega)$: closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- $f \in b^2(\Omega)$ has a reproducing property: for $x \in \Omega$, there exists unique $R(x,\cdot) \in b^2(\Omega)$

$$f(x) = \int_{\Omega} R(x, y) f(y) dy$$

 $1 \le p < \infty$, $\Omega \subset \mathbb{R}^n$: domain. $b^p(\Omega) := \{f : \Omega \to \mathbb{R} \text{ harmonic and } ||f||_p < \infty\}$: harmonic Bergman space

- $b^p(\Omega) \subset L^p(\Omega)$: closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- $f \in b^2(\Omega)$ has a reproducing property: for $x \in \Omega$, there exists unique $R(x,\cdot) \in b^2(\Omega)$

$$f(x) = \int_{\Omega} R(x, y) f(y) dy$$

 $1 \le p < \infty$, $\Omega \subset \mathbb{R}^n$: domain. $b^p(\Omega) := \{f : \Omega \to \mathbb{R} \text{ harmonic and } ||f||_p < \infty\}$: harmonic Bergman space

- $b^p(\Omega) \subset L^p(\Omega)$: closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- $f \in b^2(\Omega)$ has a reproducing property: for $x \in \Omega$, there exists unique $R(x, \cdot) \in b^2(\Omega)$

$$f(x) = \int_{\Omega} R(x, y) f(y) dy$$

 $1 \le p < \infty$, $\Omega \subset \mathbb{R}^n$: domain. $b^p(\Omega) := \{f : \Omega \to \mathbb{R} \text{ harmonic and } ||f||_p < \infty\}$: harmonic Bergman space

- $b^p(\Omega) \subset L^p(\Omega)$: closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- $f \in b^2(\Omega)$ has a reproducing property: for $x \in \Omega$, there exists unique $R(x,\cdot) \in b^2(\Omega)$

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

 $1 \leq p < \infty$, $\Omega \subset \mathbb{R}^n$: domain. $b^p(\Omega) := \{f: \Omega \to \mathbb{R} \text{ harmonic and } ||f||_p < \infty\}$: harmonic Bergman space

- $b^p(\Omega) \subset L^p(\Omega)$: closed subspace
- In particular, $b^2(\Omega) \subset L^2(\Omega)$: reproducing kernel Hilbert space
- $f \in b^2(\Omega)$ has a reproducing property: for $x \in \Omega$, there exists unique $R(x,\cdot) \in b^2(\Omega)$

$$f(x) = \int_{\Omega} R(x, y) f(y) dy.$$

- \bullet R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2} = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x)e_m(y)$$

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2} = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x)e_m(y)$$

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2} = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x)e_m(y)$$

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2} = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x)e_m(y)$$

- R(x, y) has real value.
- symmetric R(x, y) = R(y, x).
- $||R(x,\cdot)||_{b^2} = R(x,x).$
- If $\{e_m(\cdot)\}_{m\in\mathbb{N}}$ is orthogonal basis of $b^2(\Omega)$, then

$$R(x,y) = \sum_{m=1}^{\infty} e_m(x)e_m(y)$$

We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$.

It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x, y) f(y) dy.$$

For a function φ , we denote Toeplitz operator T_{φ} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x,y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator \mathcal{T}_{μ} on $b^2(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$. It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x, y) f(y) dy.$$

For a function arphi, we denote Toeplitz operator \mathcal{T}_{arphi} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x,y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator \mathcal{T}_{μ} on $b^2(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$. It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x, y) f(y) dy.$$

For a function φ , we denote Toeplitz operator T_{φ} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x,y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator \mathcal{T}_{μ} on $b^2(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

We consider the orthogonal projection P from $L^2(\Omega)$ to $b^2(\Omega)$. It is well-known that for $f \in L^2(\Omega)$, P has the form

$$Pf(x) = \int_{\Omega} R(x, y) f(y) dy.$$

For a function φ , we denote Toeplitz operator T_{φ} on $b^2(\Omega)$ by

$$T_{\varphi}f(x) := P(f\varphi)(x) = \int_{\Omega} R(x,y)f(y)\varphi(y)dy$$

For a measure μ , we denote Toeplitz operator T_{μ} on $b^{2}(\Omega)$ by

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

harmonic Bergman kernel of unit ball

When $\Omega = \mathbb{B}$ (unit ball),

$$R(x,y) = \frac{(n-4)|x|^4|y|^4 + (8x \cdot y - 2n - 4)|x|^2|y|^2 + n}{n|\mathbb{B}|((1-|x|^2)(1-|y|^2) + |x-y|^2)^{1+\frac{n}{2}}}$$

and

$$R_{\mathbb{B}}(x,x) = \frac{(n-4)|x|^4 + 2n|x|^2 + n}{n|\mathbb{B}|(1-|x|^2)^n}$$

When $\Omega = \mathbb{B}$: unit ball, $b^p(\mathbb{B}) \subset b^q(\mathbb{B})$ $(1 \le q . <math>b^p(\mathbb{B})^* \simeq b^q(\mathbb{B})$ (1 has the reproducing property

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

When $\Omega = \mathbb{B}$: unit ball, $b^p(\mathbb{B}) \subset b^q(\mathbb{B})$ $(1 \le q . <math>b^p(\mathbb{B})^* \simeq b^q(\mathbb{B})$ (1

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

When $\Omega = \mathbb{B}$: unit ball, $b^p(\mathbb{B}) \subset b^q(\mathbb{B})$ ($1 \le q). <math>b^p(\mathbb{B})^* \simeq b^q(\mathbb{B})$ ($1 , <math>\frac{1}{p} + \frac{1}{q} = 1$) $f \in b^p(\mathbb{B})$ ($1 \le p \le \infty$) has the reproducing property

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

When $\Omega = \mathbb{B}$: unit ball, $b^p(\mathbb{B}) \subset b^q(\mathbb{B})$ $(1 \le q . <math>b^p(\mathbb{B})^* \simeq b^q(\mathbb{B})$ $(1 <math>f \in b^p(\mathbb{B})$ $(1 \le p \le \infty)$ has the reproducing property

$$f(x) = \int_{\mathbb{B}} R(x, y) f(y) dy.$$

Weighted harmonic Bergman space

For $\alpha > -1$, we consider the weighted harmonic Bergman space $b_{\alpha}^{p}(\mathbb{B})$ denoted by

$$b^{p}_{\alpha}(\mathbb{B}):=\{f: ext{ harmonic on } \mathbb{B} ext{ and } \|f\|_{p,\alpha}<\infty\}$$

where

$$\|f\|_{p,lpha}:=\left(\int_{\mathbb{B}}|f(x)|^pdV_{lpha}(x)
ight)^{rac{1}{p}}$$

and $dV_{\alpha}(x) = (1 - |x|^2)^{\alpha} dx$.

Weighted kernel, projection

By same method, $f \in b^2_{\alpha}(\mathbb{B})$ has a reproducing property: for $x \in \mathbb{B}$, there exists unique $R_{\alpha}(x,\cdot) \in b^2_{\alpha}(\mathbb{B})$

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(y) dV_{\alpha}(y).$$

Orthogonal projection P_lpha form $L^2(\mathbb B,dV_lpha)$ to $b_lpha^2(\mathbb B)$ has the form

$$P_{\alpha}f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y)f(y)dV_{\alpha}(y).$$

 P_{α} is extended from $L^p(\mathbb{B}, dV_{\alpha}) \to b_{\alpha}^p(\mathbb{B})$ $(1 and <math>P_{\alpha} : L^p(\mathbb{B}, dV_{\alpha}) \to b_{\alpha}^p(\mathbb{B})$ is bounded.

Weighted kernel, projection

By same method, $f \in b^2_{\alpha}(\mathbb{B})$ has a reproducing property: for $x \in \mathbb{B}$, there exists unique $R_{\alpha}(x,\cdot) \in b^2_{\alpha}(\mathbb{B})$

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(y) dV_{\alpha}(y).$$

Orthogonal projection P_{α} form $L^{2}(\mathbb{B}, dV_{\alpha})$ to $b_{\alpha}^{2}(\mathbb{B})$ has the form

$$P_{\alpha}f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y)f(y)dV_{\alpha}(y).$$

 P_{α} is extended from $L^p(\mathbb{B}, dV_{\alpha}) \to b_{\alpha}^p(\mathbb{B})$ $(1 and <math>P_{\alpha} : L^p(\mathbb{B}, dV_{\alpha}) \to b_{\alpha}^p(\mathbb{B})$ is bounded.

Weighted kernel, projection

By same method, $f \in b^2_{\alpha}(\mathbb{B})$ has a reproducing property: for $x \in \mathbb{B}$, there exists unique $R_{\alpha}(x,\cdot) \in b^2_{\alpha}(\mathbb{B})$

$$f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y) f(y) dV_{\alpha}(y).$$

Orthogonal projection P_{α} form $L^{2}(\mathbb{B}, dV_{\alpha})$ to $b_{\alpha}^{2}(\mathbb{B})$ has the form

$$P_{\alpha}f(x) = \int_{\mathbb{B}} R_{\alpha}(x, y)f(y)dV_{\alpha}(y).$$

 P_{α} is extended from $L^p(\mathbb{B}, dV_{\alpha}) \to b_{\alpha}^p(\mathbb{B})$ (1 $) and <math>P_{\alpha} : L^p(\mathbb{B}, dV_{\alpha}) \to b_{\alpha}^p(\mathbb{B})$ is bounded.

Properties for weighted harmonic Bergman kernel

Let $\alpha > 0$. Then,

- $b^p(\mathbb{B}) \subset b^p_\alpha(\mathbb{B})$.
- For $x, y \in \mathbb{B}$,

$$R_{\alpha}(x,x) pprox rac{1}{(1-|x|)^{n+lpha}}$$

 $R_{\alpha}(x,y) \lesssim rac{1}{|x-y|^{n+lpha}}$

• $P_{\alpha}: L^{p}(\mathbb{B}) \to b^{p}(\mathbb{B})$ is bounded for $1 \leq p$.

$$P_{\alpha}f(x) = \int_{\mathbb{R}} f(y)R_{\alpha}(x,y)(1-|y|^2)^{\alpha}dy.$$

Let $\alpha > 0$. Then,

- $b^p(\mathbb{B}) \subset b^p_\alpha(\mathbb{B})$.
- For $x, y \in \mathbb{B}$,

$$R_{\alpha}(x,x) pprox rac{1}{(1-|x|)^{n+lpha}}$$

 $R_{\alpha}(x,y) \lesssim rac{1}{|x-y|^{n+lpha}}$

$$P_{\alpha}f(x) = \int_{\mathbb{R}} f(y)R_{\alpha}(x,y)(1-|y|^2)^{\alpha}dy.$$

Let $\alpha > 0$. Then,

- $b^p(\mathbb{B}) \subset b^p_\alpha(\mathbb{B})$.
- For $x, y \in \mathbb{B}$,

$$R_{\alpha}(x,x) pprox rac{1}{(1-|x|)^{n+lpha}}$$
 $R_{\alpha}(x,y) \lesssim rac{1}{|x-y|^{n+lpha}}$

$$P_{\alpha}f(x) = \int_{\mathbb{R}} f(y)R_{\alpha}(x,y)(1-|y|^2)^{\alpha}dy.$$

Let $\alpha > 0$. Then,

- $b^p(\mathbb{B}) \subset b^p_\alpha(\mathbb{B})$.
- For $x, y \in \mathbb{B}$,

$$R_{\alpha}(x,x) pprox rac{1}{(1-|x|)^{n+lpha}}$$
 $R_{\alpha}(x,y) \lesssim rac{1}{|x-y|^{n+lpha}}$

$$P_{\alpha}f(x) = \int_{\mathbb{B}} f(y)R_{\alpha}(x,y)(1-|y|^2)^{\alpha}dy.$$

Let $\alpha > 0$. Then,

- $b^p(\mathbb{B}) \subset b^p_\alpha(\mathbb{B})$.
- For $x, y \in \mathbb{B}$,

$$R_{\alpha}(x,x) pprox rac{1}{(1-|x|)^{n+lpha}}$$
 $R_{\alpha}(x,y) \lesssim rac{1}{|x-y|^{n+lpha}}$

$$P_{\alpha}f(x) = \int_{\mathbb{B}} f(y)R_{\alpha}(x,y)(1-|y|^2)^{\alpha}dy.$$

Known results of Toeplitz operators on $b^2(\mathbb{B})$

Definition (averaging function, Berezin transform)

For any $0 < \delta < 1$,

$$\hat{\varphi}_{\delta}(x) := \frac{\int_{E_{\delta}(x)} \varphi(y) dy}{V(E_{\delta}(x))}$$
: averaging function

$$ilde{arphi}(x) := rac{\int_{\mathbb{B}} |R(x,y)|^2 arphi(y) dy}{R(x,x)}$$
 : Berezin transform

for any $x \in \mathbb{B}$, where $E_{\delta}(x) := \{y \in \mathbb{B} : |x - y| < \delta(1 - |x|)\}.$

We can describe the boundedness of Toeplitz operator T_{φ} by using the above associate functions.

Known results of Toeplitz operators on $b^2(\mathbb{B})$

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_{φ} is bounded;
- averaging function φ̂ is bounded function;
- Berezin transform $\tilde{\varphi}$ is bounded function.

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_o is compact;
- averaging function $\hat{\varphi}(x) \to 0$ as $|x| \to 1$;
- Berezin transform $\tilde{\varphi}(x) \to 0$ as $|x| \to 1$.

Known results of Toeplitz operators on $b^2(\mathbb{B})$

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_{φ} is bounded;
- averaging function φ̂ is bounded function;
- Berezin transform $\tilde{\varphi}$ is bounded function.

Theorem

Let φ be a positive function on \mathbb{B} . Then, the following conditions are equivalent:

- T_{φ} is compact;
- averaging function $\hat{\varphi}(x) \to 0$ as $|x| \to 1$;
- Berezin transform $\tilde{\varphi}(x) \to 0$ as $|x| \to 1$.

The preceding result

We consider Ω is smooth bounded domain in \mathbb{R}^n . We have the following theorem.

Theorem (Kang-Koo 2002)

Let Ω be a smooth bounded domain and α and β be multi-indices. Then, there exist $C_{\alpha,\beta} > 0$ and C > 0 such that for any $x, y \in \Omega$

$$|D_x^{\alpha}D_y^{\beta}R(x,y)| \leq \frac{C_{\alpha,\beta}}{d(x,y)^{n+|\alpha|+|\beta|}}$$

and

$$R(x,x) \geq \frac{C}{r(x)^n}$$

where d(x, y) := r(x) + r(y) + |x - y| and r(x) is the distance between x and boundary of Ω .

Harmonic Bergman projection

 $1 \le p < \infty$, $f \in b^p(\Omega)$ has the reproducing property, that is

$$f(x) = \int_{\Omega} R(x, y) f(y) dy$$

$$Pf(x) := \int_{\Omega} R(x, y) f(y) dy \quad f \in L^{p}(\Omega)$$

harmonic Bergman projection

1 : bounded linear operator

Preparation for results

Lemma (covering lemma)

Let $0 < \delta < \frac{1}{4}$. We can choose N (independ of δ), $\{\lambda_i\} \subset \Omega$ and disjoint covering $\{E_i\}$ for Ω .

- **1** E_i is measurable set for any $i \in \mathbb{N}$;
- ② $E_i \subset B(\lambda_i, \delta r(\lambda_i))$ for any $i \in \mathbb{N}$;
- **3** $\{B(\lambda_i, 3\delta r(\lambda_i))\}$ is uniformly finite intersection with bound N where r(x) denotes the distance between x and $\partial\Omega$.

Representation theorem

Theorem (T. 2012)

Let $1 , <math>\Omega$ be a bounded smooth domain. There exists $0 < \delta_0$ such that if $\{\lambda_i\}$ satisfies covering lemma for $\delta < \delta_0$, then $A_{p,\{\lambda_i\}}: \ell^p \to b^p$ is a bounded onto map, where the operator $A_{p,\{\lambda_i\}}$ is defined by

$$A_{p,\{\lambda_i\}}\{a_i\}(x):=\sum_{i=1}^{\infty}a_iR(x,\lambda_i)r(\lambda_i)^{(1-\frac{1}{p})n},$$

where r(x) denotes the distance between x and $\partial \Omega$.

Interpolating of harmonic Bergman functions

Let denote $V: b^p(\Omega) \to I^p$ by

$$V_{p,\{\lambda_i\}}f:=\{r(\lambda_i)^{\frac{n}{p}}f(\lambda_i)\}.$$

It is known that $A_{p,\{\lambda_i\}}^* = V_{q,\{\lambda_i\}}$ for $1 : <math>\frac{1}{p} + \frac{1}{q} = 1$.

Theorem (T. 2013)

Let $1 . We can choose a positive constant <math>\rho_0$ satisfying the following condition;

if $\{\lambda_i\}_i \subset \Omega$ satisfy quasi-hyperbolic distance $\rho(\lambda_i, \lambda_j) > \rho_0$ for $i \neq j$, then $V : b^p(\Omega) \to l^p$ is bounded and onto.

$$\rho(x,y) := \inf_{\gamma \in \Gamma_{x,y}} \int_{\gamma} \frac{1}{r(z)} ds(z)$$

Interpolating of harmonic Bergman functions

Let denote $V: b^p(\Omega) \to l^p$ by

$$V_{p,\{\lambda_i\}}f:=\{r(\lambda_i)^{\frac{n}{p}}f(\lambda_i)\}.$$

It is known that $A_{p,\{\lambda_i\}}^* = V_{q,\{\lambda_i\}}$ for $1 , <math>q: \frac{1}{p} + \frac{1}{q} = 1$.

Theorem (T. 2013)

Let $1 . We can choose a positive constant <math>\rho_0$ satisfying the following condition;

if $\{\lambda_i\}_i \subset \Omega$ satisfy quasi-hyperbolic distance $\rho(\lambda_i, \lambda_j) > \rho_0$ for $i \neq j$, then $V : b^p(\Omega) \to l^p$ is bounded and onto.

$$\rho(x,y) := \inf_{\gamma \in \Gamma_{x,y}} \int_{\gamma} \frac{1}{r(z)} ds(z)$$

Outline of the proof of representation theorem

We define the operators $U_{p,\{\lambda_i\}}:b^p\to\ell^p$ and $S_{p,\{\lambda_i\}}:b^p\to b^p$ as following;

$$S_{p,\{\lambda_i\}}f(x) := \sum_{i=1}^{\infty} R(x,\lambda_i)f(\lambda_i)|E_i|$$

$$U_{p,\{\lambda_i\}}(f):=\{|E_i|f(\lambda_i)r(\lambda_i)^{-(1-\frac{1}{p})n}\}_i$$

where $\{E_i\}_i$ is the disjoint covering of Ω such that $\lambda_i \in E_i$ for any $i \in \mathbb{N}$. Because $S = A \circ U$, by calculating $\|S - Id\|$, we can give the condition that S is bijective.

Modified harmonic Bergman kernel

Fix a defining function η for Ω s.t.

$$|
abla \eta|^2 = 1 + \eta \omega$$
 for some $\omega \in \mathcal{C}^\infty(\bar{\Omega})$.

We denote the differential operator K_1 by

$$K_1g := g - \frac{1}{2}\Delta(\eta^2g)$$

 $R_1(x,y) := K_1(R_x)(y)$: modified harmonic Bergman kernel,

where
$$R_x(\cdot) := R(x, \cdot)$$

$$P_1f(x) := \int_{\Omega} R_1(x,y)f(y)dy$$
 modified projection.

Some property

Theorem (Choe-Koo-Yi 2004)

- $P_1 f = f$ for any $f \in b^1(\Omega)$.
- $P_1: L^p(\Omega) \to b^p(\Omega)$ is bounded for any $1 \le p < \infty$.
- For any multi-index α , there exists $C_{\alpha} > 0$ such that

$$|D_x^{\alpha}R_1(x,y)| \leq \frac{C_{\alpha}r(y)}{d(x,y)^{n+1+|\alpha|}}$$

$$|D_y^{\alpha}R_1(x,y)| \leq \frac{C_{\alpha}}{d(x,y)^{n+1}}$$

Comparison between kernels

properties	Bergman kernel	modified kernel
symmetric	symmetric	non-symmetric
reproducing property	exist for $p \ge 1$	exist for $p \ge 1$
lower bdd	exist	not exist
upper bdd	$\frac{1}{d(x,y)^n}$	$\frac{r(y)}{d(x,y)^{n+1}}$
projection	bdd for $p > 1$	bdd for $p \ge 1$

Modified representation

Theorem (T. 2013)

Let $1 \le p < \infty$ and Ω be a smooth bounded domain. Then, we can choose a sequence $\{\lambda_i\}$ in Ω such that $A_1 : \ell^p \to b^p$ is a bounded onto map, where the operator A_1 is defined by

$$A_1\{a_i\}(x) := \sum_{i=1}^{\infty} a_i R_1(x,\lambda_i) r(\lambda_i)^{(1-\frac{1}{p})n},$$

Harmonic Bloch space

$$\mathcal{B}:=\{f:\Omega o\mathbb{R}: ext{ harmonic, } \|f\|_{\mathcal{B}}<\infty\}$$

$$\|f\|_{\mathcal{B}}:=\sup\{r(x)|\nabla f(x)|:x\in\Omega\}$$

$$(b^1)^*\cong\mathcal{B}$$

For fix $x_0 \in \Omega$,

$$\mathcal{B}_0:=\{f\in\mathcal{B}:f(x_0)=0\}$$

Representation for harmonic Bloch function

Theorem (T. 2013)

 Ω be a smooth bounded domain. Then, we can choose a sequence $\{\lambda_i\}$ in Ω such that $A_\infty:\ell^\infty\to\mathcal{B}_0$ is a bounded onto map, where the operator A_∞ is defined by

$$f(x) = \sum_{j=1}^{\infty} a_j \tilde{R}_1(x, \lambda_j) r(\lambda_j)^n,$$

where $\tilde{R}_1(x, y) = R_1(x, y) - R_1(0, y)$.

Definition and problem for Toeplitz operator

Definition (Toeplitz operator)

 T_{μ} on b^2 the Toeplitz operator with symbol μ

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

Problem.

What condition is the Toeplitz operator T_{μ} **good** (bounded, compact and of Schatten σ -class S^{σ} etc) ?

Definition and problem for Toeplitz operator

Definition (Toeplitz operator)

 T_{μ} on b^2 the Toeplitz operator with symbol μ

$$T_{\mu}f(x) := \int_{\Omega} R(x,y)f(y)d\mu(y).$$

Problem.

What condition is the Toeplitz operator T_{μ} **good** (bounded, compact and of Schatten σ -class S^{σ} etc) ?

Averaging function, Berezin transform

Definition (averaging function, Berezin transform)

For any $0 < \delta < 1$ and 1 ,

$$\hat{\mu}_{\delta}(x) := \frac{|\mu(\mathcal{E}_{\delta}(x))|}{V(\mathcal{E}_{\delta}(x))}$$
: averaging function

$$ilde{\mu}_{
ho}(x) := rac{\int_{\Omega} |R(x,y)|^{
ho} d\mu(y)}{\int_{\Omega} |R(x,y)|^{
ho} dy}$$
 : Berezin transform

for any $x \in \Omega$.

The preceding result for Toeplitz operator

Theorem (Choe-Lee-Na 2004)

Let 1 $\leq \sigma < \infty$ and 0 $< \delta <$ 1. For $\mu \geq$ 0, the following conditions are equivalent;

- $T_{\mu} \in \mathcal{S}_{\sigma}$,
- $\tilde{\mu}_2 \in L^{\sigma}(dV_R)$,
- $\bullet \ \hat{\mu}_{\delta} \in L^{\sigma}(dV_R),$
- $\sum_{j} \hat{\mu}_{\delta}(\lambda_{j})^{\sigma} < \infty$.

for some $\{\lambda_j\}$ satisfied with covering lemma, where $dV_R = R(x,x)dx$.

c.f.

T : compact operator on Hilbert space \mathcal{H} , $0 < \sigma \infty$

T belongs to σ -Schatten class $S_{\sigma} \Leftrightarrow \sum_{m=1}^{\infty} s_m(T)^{\sigma} < \infty$

where $\{s_m(T)\}_m$ is singular value sequence of T.

Extension of the previous theorem

Theorem (T. 2013)

Let $\sigma > \frac{2(n-1)}{n+2}$ and $\mu \ge 0$. Choose a constant $\delta > 0$ and a sequence $\{\lambda_j\}$ satisfying the conditions obtained by covering lemma. If $\sum_{i=1}^{\infty} \hat{\mu}_{\delta}(\lambda_i)^{\sigma} < \infty$, then $T_{\mu} \in S_{\sigma}$.

Outline of the proof

By the standard operator theory, $X \in S^{\sigma}$ and Y is bdd operator $\Rightarrow XY, YX \in S^{\sigma}$.

- First, we can check the condition $A^*T_{\mu}A \in S^{\sigma}(\ell^2)$.
- $T_{\mu} = (US^{-1})^*A^*T_{\mu}A(US^{-1})$ belongs to S^{σ} . \square

Outline of the proof

By the standard operator theory, $X \in S^{\sigma}$ and Y is bdd operator $\Rightarrow XY, YX \in S^{\sigma}$.

- First, we can check the condition $A^*T_\mu A \in S^\sigma(\ell^2)$.
- $T_{\mu} = (US^{-1})^*A^*T_{\mu}A(US^{-1})$ belongs to S^{σ} . \square

Outline of the proof

By the standard operator theory,

 $X \in S^{\sigma}$ and Y is bdd operator $\Rightarrow XY, YX \in S^{\sigma}$.

- First, we can check the condition $A^*T_\mu A \in S^\sigma(\ell^2)$.
- $T_{\mu} = (US^{-1})^* A^* T_{\mu} A (US^{-1})$ belongs to S^{σ} . \square

References

- [1] B. R. Choe, H. Koo and H. Yi, *Projections for harmonic Bergman spaces and applications*, J. Funct. Anal., **216** (2004), 388–421.
- [2] R.R. Coifman and R. Rochberg, Representation Theorems for Holomorphic and Harmonic functions in L^p , Astérisque **77** (1980), 11–66.
- [3] C. Fefferman, *The Bergman kernel and biholomorphic mappings of pseudoconvex domains*, Inv. Math. **26** (1974), 1–65.
- [4] H. Kang and H. Koo, *Estimates of the harmonic Bergman kernel on smooth domains*, J. Funct. Anal., **185** (2001), 220–239.
- [5] K. Stroethoff, *Compact Toeplitz operators on weighted harmonic Bergman spaces.* J. Austral. Math. Soc. Ser. A **64** (1998), no. 1, 136–148.
- [6] K. Tanaka, *Atomic decomposition of harmonic Bergman functions*, Hiroshima Math. J., 42 (2012), 143–160.
- [7] K. Tanaka, Representation theorem for harmonic Bergman and Bloch functions, to appear in Osaka J. Math..