[第6回目]運動方程式1:自由運動と自由落下 考える内容

- ・ 運動方程式を解くとはどういうことか 物理用語
- ・ 因果律:結果には必ず原因がある,または原因に応じて結果が決まる (古典力学の決定論的 vs 現代物理の確率論的)

今日の授業の目標

自由運動の運動方程式とその解[等速直線運動,1次関数]

運動方程式:
$$m\frac{dv_x}{dt} = 0$$
, $m\frac{dv_y}{dt} = 0$, $m\frac{dv_z}{dt} = 0$

初期条件として, t=0の位置 (x_0, y_0, z_0) と速度 $(v_0, 0, 0)$ のとき

解:
$$v_x = v_0$$
, $x = v_0 t + x_0$; $v_y = 0$, $y = y_0$; $v_z = 0$, $z = z_0$ 落体運動(自由落下)の運動方程式とその解「等加速度運動,2次関数]

運動方程式:
$$m\frac{dV_x}{dt} = mg$$
 x 軸は鉛直下向き

初期条件として, t=0 の位置 x_0 , 速度 v_0 のとき

$$\mathbf{H}: \mathbf{V}_x = gt + \mathbf{V}_0, \quad x = \frac{1}{2}gt^2 + \mathbf{V}_0t + x_0$$

学習到達目標(3)運動の方程式を立てられる。

学習到達目標(4)自由落下,放物運動,単振動,単振り子の場合に, 運動方程式を満たす解としての運動を求められる。

次回予定[第7回目]運動方程式2(教科書47ページ半ば1.8 dの前)

数値で計算する問題は、答えにも必ず単位をつける!MKS単位系で答えること!

自由運動の運動方程式を書きなさい。[教科書の式(1.63)]

運動の方向を x 軸にとり , x 軸方向の自由運動 (等速直線運動) を式で表せ。 t=0 の位置

を x_0 , 速度を v_0 とする。[教科書の式 (1.59)]

の運動を表す式が,自由運動の運動方程式の解であることを示せ。

鉛直下向きにx 軸をとり,落体運動の運動方程式を書きなさい。[教科書の式 (1.72)] 問 1.21 を答えなさい。

問 1.22 を答えなさい。「(1.71) のときと同様にしてと書かないで, ちゃんとやること]

質量 m のボールを , 時刻 t=0 に $x_0=0$ m の位置から速度 $v_0=$ - 19.6 $\mathrm{m/s}$ で投げ上げた。

ボールが運動する式を,問1.22の結果を用いて求めなさい。それをグラフに表しなさい。

解答用紙	〔 <u>学籍番号</u>		<u>氏名</u>	7		
解	答スペースが足らな	ければ , 続きを	裏に書くか,他の	D紙に書いてホッ	ιチキスでとめて∄	是出しなさい
数値で計算する問題は,答えにも必ず単位をつける!MKS 単位系で答えること!						
L						

式

10 *t* 5 [s] 0 3 -10 グラフはgに値を入れて書くこと -20

[m]20