
[第13回目] 減衰振動

≪今日の授業の目標≫ 弾性力とともに**抵抗力や摩擦力**が働く場合の運動

運動方程式

 ω [rad/s]: 固有角振動数,

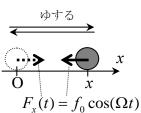
γ [s⁻¹]:減衰率

(i) 減衰振動 $(\gamma < \omega)$: $x(t) = Ae^{-\gamma t} \cos(\omega t + \alpha)$ $\omega' = \sqrt{\omega^2 - \gamma^2}$

(ii) 過減衰 $(\gamma > \omega)$: $x(t) = Ae^{-\gamma_1 t} + Be^{-\gamma_2 t}$

 $\left(\gamma_1, \gamma_2 = \gamma \pm \sqrt{\gamma^2 - \omega^2} \right)$

(iii) 臨界減衰 $(\gamma = \omega)$: $x(t) = e^{-\gamma t} (At + B)$

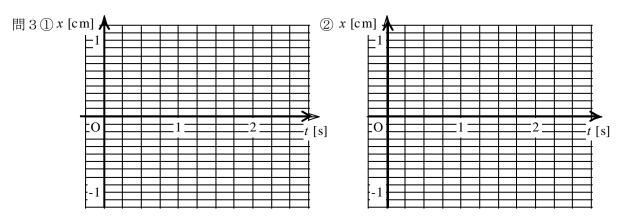

学習到達目標(6)減衰振動および強制振動と共振の意味が理解できる。

次回予定[第14回目]強制振動と共振(教科書162~164ページまで,参考198~201ページ) レポート問題 第13回目(右側の半分の解答用紙を切り取って提出しなさい)

数値で計算する問題は, 答えにも必ず単位をつける!指示がない限り MKS 単位系で答えること! ☆… 問1 本日の授業で学んだことで,重要と思うことを文章でまとめよ。(部分的になら式もよい。) B... 問 2 教科書 158 ページの図 34.1 の問題設定について、運動方程式を立て、 $\omega = \sqrt{k/m}$ 、 $\gamma = c/(2m)$ を用いた式に変形せよ。

問3 振幅 A=1 [cm],振動数 f=1 [Hz],減衰率 $\gamma=0.4$ [s⁻¹] とする。($\omega=2\pi f$)

- A… ① 単振動の式 $x(t) = A\cos(2\pi f t)$ を、横軸を t[s]、縦軸を x[cm]にとってグラフで表せ。
- $\triangle \cdot \mathbf{B}$ ② 減衰振動の式 $x(t) = A e^{-\gamma t} \cos(2\pi f't)$ を、横軸を $t[\mathbf{s}]$ 、縦軸を $x[\mathbf{cm}]$ にとってグラフで表 せ。ただし $f' = \sqrt{\omega^2 - \gamma^2/(2\pi)} \stackrel{\cdot}{=} 1$ [Hz] として書け。
 - 問 4 自然長L, ばね定数kの軽いばねの片方の端を固定し、他方の端に質量m=0.600 $\lceil kg \rceil$ のおもりを結んで、滑らかな水平面上に置く。その全体を油の入った水槽の中に浸して運動さ せた。ばねが自然長となる位置を原点 O とし、ばねが伸びる方向をx軸の正とする。
- $A\cdots$ ① おもりを $f_0=6.72$ [N] の力で水平に引くと、 $x_0=0.0800$ [m] の位置で静止した。ばね 定数kを数値で求めよ。また、角振動数 ω を数値で求めよ。
- \mathbf{B} … ② 抵抗力の係数を c = 3.60 [N·s/m] のとき、減衰率 γ を数値で求めよ。
- ③ x方向について、おもりの運動方程式立てよ。(文字式で)
- ④ ③の一般解x(t)を初期位相 α と振幅Aを用いて書け。($\omega' = \sqrt{\omega^2 \gamma^2}$ とする。)
- \mathbf{B} … ⑤ ④を時間tで微分して、おもりの速度 $v_{\mathbf{r}}(t)$ を求めよ。(t以外の文字は定数)
- $\mathbf{B}\cdots$ ⑥ ①②の結果を用いて、補正された角振動数 $\omega'=\sqrt{\omega^2-\gamma^2}$ と周期 $T'=2\pi/\omega'$ を求めよ。
- \mathbb{C} で① σx_0 から静かに $(v_x(0)=0)$ 放した。この初期条件から、位相 α と振幅 A を求めよ。
- $C \cdots \otimes x < 0$ の側に、おもりはどこまで振れるかを知りたい。位置x(t = T'/2)を求めよ。
- $^{\mathbf{B}\cdots}$ ⑨ どろどろした(粘性が大きい)油に代えると減衰率 γ が大きくなり, $\gamma>\omega$ になった。おもりの運動はどのような運動に変わるか、簡単に説明せよ。
- $C\cdots$ 問 5 強制振動を考える参考として, ばねにつながれていない質量mの 物体に、強制振動力 $F_{x}(t) = f_{0}\cos(\Omega t)$ のみを加えた場合を考える。x方向の運動方程式を立て,運動x(t)を求めよ。初期条件はx(0) = 0[m], $v_{x}(0) = 0$ [m/s] とする。強制振動力の角振動数 Ω を変化させても、特定 の角振動数で共振 (振幅の極大) が起こらないことを確認せよ。



解答用紙(授業 曜 限)学籍番号

氏名

数値で計算する問題は、答えにも必ず単位をつける!指示がない限り MKS 単位系で答えること! ☆… 問 1

問 2

問4 ①

 $\omega =$

[] 2γ =

]

(3)

(4)

⑤ x(t)を微分すると、 $v_x(t)$ =

 $\Theta' = \Theta'$

[], T' =

]

⑦ t = 0 でx(0) = 0.0800, v(0) = 0 より

 $(\ \ \ \ \ \) \ \ : \ A\cos\alpha = 0.0800 \ \ \ \ \ \tan\alpha = -\gamma/\omega')$

(8) x(T'/2) =

9

問5