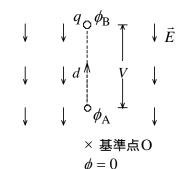
「第3回目]電位と静電エネルギー1

今日の授業の目標

電位差(電圧)V 単位 [V](ボルト) : 1[C] **あたりの仕事**, エネルギー 静電気力に逆らってする仕事 W_{3} 単位 [J](ジュール)


静電エネルギー △U として蓄えられる

$$\Delta U = W_{\mathfrak{H}} = qV$$

電場は1[C]に働く力だから

$$V = Ed$$
, $E = \frac{V}{d}$

(電場 E の単位 [N/C] は [V/m] とも表せる)

電位 $\phi(ec{r})$:基準点を0 [$extsf{V}$] として測る 単位 [$extsf{V}$](ボルト)

igg(A 点と B 点の電位差 $\,V = \phi_{
m B} - \phi_{
m A}$

① 学習到達目標(2)**電位と静電エネルギーの関係がわかる。**

レポート問題 第3回目(右側の半分の解答用紙を切り取って提出しなさい)

数値で計算する問題は、答えにも必ず単位をつけること!

- $A\cdots$ 問 1 点電荷Q から距離r だけ離れた位置での電場の強さE を式で表せ。E 教科書の式(E5.E10)]
- Q=2.0 [C] の点電荷から距離 r=0.10 [m] 離れた位置での電場の強さ E を数値で求めよ。
- B… Q = -7.0 [C] の点電荷から距離 r = 2.0 [m] 離れた位置での電場ベクトル \vec{E} の強さ E を数値で求めよ。また \vec{E} の向き(Q から離れる向きか,Q に近づく向きか)も答えよ。
- $B\cdots$ 問 2 正の点電荷Qのまわりの電気力線の様子を図に書け。 正の電荷Q [C] からでる電気力線の数 N の数を Q を用いて表せ [教科書 (5.12)]。 電場の強さ E と電気力線の数 N との関係から , 正の点電荷Q から距離 r だけ離れた位置での電場の強さ E を表す式を導け。
- B… 問3 面積 $S=3.14\times10^{-2}$ [m^2]の金属の平板に , $Q=5.0\times10^{-10}$ [C]の電荷を一様に与えた。 一様な平板電荷のまわりの電気力線の様子を図に書け。 平板の片側に出て行く電気力線の数 N を Q を用いて式で表せ。 平板電荷のまわりにできる電場の強さ E を数値で求めよ。
- $A\cdots$ 問 4 カ \vec{F} がする仕事W の定義式をF , s , θ を使って表せ。[教科書 10 ページの式 (2.10)]
- A… 電位差V と仕事Wの関係(定義式)と電位差の単位を書け。[教科書の式(5.18)]
- $B\cdots$ 2箇所の位置 A 点と B 点との電位差はV=5.0 [V] であり,B 点の方が電位が高いとする。 A 点から B 点まで q=2.0 [C] の電荷を運ぶのに必要な仕事 $W_{\rm sh}$ を数値で求めよ。
- g=3.0[C]の電荷を位置 g=3.0[C]の電荷を位置 g=3.0[C]の電荷を位置 g=3.0[C]の電荷を位置 g=3.0[C]の電位差g=3.0[C]の間の電位差g=3.0[C]の間の電位差g=3.0[C]の間の電位差g=3.0[C]の間の電位差g=3.0[C]の電荷を位置 g=3.0[C]の電荷を位置 g=3.0[C]の電荷をは g=3.0[C]の電荷を位置 g=3.0[C]の電荷をは g=3.0[C]のでは g=3.0[C]のでは g=3.0[C]のでは g=3.0[C]の電荷をは g=3.0[C]のでは g=
- B… 問 5 電荷 q を ,電気力 \vec{F} と同じ向き ($\theta=0$)に ,距離 d だけ移動したときの仕事W を F と d を使って表せ。 この関係式から ,仕事W と電位差V の関係 ,電気力 F と電場の強さ E と の関係を用いて ,電位差V と電場の強さ E との関係 [教科書の式 (5.19)]を導け。
- $B\cdots$ 一様な電場 \vec{E} を考える。電場の強さをE=3.0 [N/C] とする。電気力線に沿って距離 d=4.0 [m] 離れた位置に A 点と B 点をとる。A 点と B 点との電位差V を求めよ。

解答用紙 (曜 限

限)学籍番号

氏名

数値で計算する問題は,答えにも必ず単位をつけること!

問 1

$$E =$$

E =

[]

E =

[] 向き:

問2

 $Q \bullet$

N =

$$E = \frac{N}{S} =$$

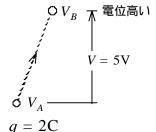
問3

1**v** –

$$E = \frac{N}{S} =$$

[]

問4


 $W_{\mathfrak{H}} =$

V =

電位が高いのは_____

[]

電位差の単位[]

問 5 W =

ヒント: 教科書の式(5.16),(5.17)

1 [C] の電荷を A 点から B 点に運ぶ仕事を考えてもよい。

V =

[] \(\frac{4.0 \text{ [m]}}{A} \)

このレポートをやるのに ______時間____分,

それ以外に基礎物理 の予習復習を 時間 分した。